CHAPTER 1 시작하기 전에
__1.1 이 책에서 다루는 내용
__1.2 왜 데이터 분석에 파이썬을 사용하나
__1.3 필수 파이썬 라이브러리
__1.4 설치 및 설정
__1.5 커뮤니티와 컨퍼런스
__1.6 이 책을 살펴보는 방법
CHAPTER 2 파이썬 언어의 기본, IPython, 주피터 노트북
__2.1 파이썬 인터프리터
__2.2 IPython 기초
__2.3 파이썬 기초
CHAPTER 3 내장 자료구조, 함수, 파일
__3.1 자료구조와 순차 자료형
__3.2 함수
__3.3 파일과 운영체제
__3.4 마치며
CHAPTER 4 NumPy 기본: 배열과 벡터 연산
__4.1 NumPy ndarray: 다차원 배열 객체
__4.2 유니버설 함수: 배열의 각 원소를 빠르게 처리하는 함수
__4.3 배열을 이용한 배열지향 프로그래밍
__4.4 배열 데이터의 파일 입출력
__4.5 선형대수
__4.6 난수 생성
__4.7 계단 오르내리기 예제
__4.8 마치며
CHAPTER 5 pandas 시작하기
__5.1 pandas 자료구조 소개
__5.2 핵심 기능
__5.3 기술 통계 계산과 요약
__5.4 마치며
CHAPTER 6 데이터 로딩과 저장, 파일 형식
__6.1 텍스트 파일에서 데이터를 읽고 쓰는 법
__6.2 이진 데이터 형식
__6.3 웹 API와 함께 사용하기
__6.4 데이터베이스와 함께 사용하기
__6.5 마치며
CHAPTER 7 데이터 정제 및 준비
__7.1 누락된 데이터 처리하기
__7.2 데이터 변형
__7.3 문자열 다루기
__7.4 마치며
CHAPTER 8 데이터 준비하기: 조인, 병합, 변형
__8.1 계층적 색인
__8.2 데이터 합치기
__8.3 재형성과 피벗
__8.4 마치며
CHAPTER 9 그래프와 시각화
__9.1 matplotlib API 간략하게 살펴보기
__9.2
★ 『파이썬 라이브러리를 활용한 데이터 분석』 드디어 개정!
이 책의 초판이 출간된 2012년은 pandas 개발 초기로, 파이썬용 오픈소스 데이터 분석 라이브러리가 흔하지 않았습니다. 이번에 pandas의 새로운 기능과 5년여간의 세월이 흐르는 동안 낡았거나 사용법이 바뀐 내용을 모두 반영하여 책 전반을 다시 다듬었습니다. 또한 당시에는 존재하지 않았거나 책에 싣기에는 불안했던 갓 나온 도구들을 새로 소개하는 내용을 추가했습니다. 2판의 주요 변경 사항은 다음과 같습니다.
● 모든 코드를 파이썬 3.6 기반으로 수정
● 아나콘다 파이썬 배포판과 몇몇 필수 파이썬 패키지로 설치
● 최신 pandas 라이브러리 사용
● pandas 고급 사용법과 사용팁 추가
● statsmodels와 scikit-learn 라이브러리 소개
★ 이 책에서 다루는 내용
이 책은 파이썬으로 데이터를 다루는 다양하고 기본적인 방법을 소개합니다. 그러기 위해 파이썬 프로그래밍 언어의 일부와 데이터 분석 문제를 효율적으로 해결하는 데 도움이 되는 몇 가지 라이브러리를 다룹니다. ‘데이터 분석’이 이 책의 제목이긴 하지만 데이터 분석 방법론이 아니라 파이썬 프로그래밍, 라이브러리, 도구에 집중합니다. 주요 내용은 다음과 같습니다.
● IPython 셸, 주피터 노트북 사용하기
● NumPy 기본 및 고급 기능 알아보기
● pandas로 데이터 분석 입문하기
● 유연한 도구를 사용해 데이터 로딩, 정제, 조인, 병합, 변형하기
● matplotlib으로 유용한 시각화 만들기
● pandas groupby 기능을 적용해 데이터를 나누고 요약하기
● 시계열 데이터 분석 및 조작하기
추천사
“이미 필독서가 된 이 책이 업그레이드되었다. 2판에는 파이썬 3.6부터 pandas 최신 기능에 이르기까지 이 책의 가치를 더 향상시킬 내용이 담겼다. 왜 파이썬 라이브러리인지, 이 도구들을 어떻게 다뤄야 하는지 설명해 독자가 새롭고 창의적인 방식으로 효율적