CHAPTER 1 딥러닝 소개 1
1.1 신경망을 위한 기초 수학 3
1.1.1 단층 퍼셉트론 3
1.1.2 다층 퍼셉트론 8
1.1.3 합성곱 계층과 풀링층 9
1.1.4 활성화 함수 12
1.2 뉴럴 네트워크 17
1.2.1 손실 함수의 중요성 17
1.2.2 정규화 18
1.2.3 역전파 알고리즘 19
1.2.4 최적화 방법 19
1.3 정리 21
CHAPTER 2 신경망 구조 23
2.1 합성곱 신경망 24
2.1.1 AlexNet 25
2.1.2 GoogLeNet 26
2.1.3 ResNet 27
2.1.4 SqueezeNet 29
2.2 순환 신경망 31
2.2.1 LSTM 33
2.2.2 GRU 34
2.3 강화 학습 35
2.3.1 DQN 38
2.4 정리 39
CHAPTER 3 자바스크립트 딥러닝 프레임워크 41
3.1 TensorFlow.js 42
3.1.1 TensorFlow.js 시작하기 42
3.1.2 XOR 문제 43
3.1.3 XOR 문제 해결 44
3.1.4 네트워크 구조 49
3.1.5 텐서 50
3.1.6 연산 52
3.1.7 학습 55
3.1.8 TensorFlow.js 생태계 58
3.2 WebDNN 61
3.3 Keras.js 63
3.4 정리 65
CHAPTER 4 딥러닝을 위한 자바스크립트 기초 67
4.1 자바스크립트 형식화 배열 68
4.1.1 ArrayBuffer 69
4.1.2 DataView 71
4.2 자바스크립트 동시성 73
4.2.1 자바스크립트 이벤트 루프 73
4.2.2 Promise 비동기 함수 75
4.2.3 async/await 비동기 함수 77
4.2.4 웹워커를 사용한 멀티스레딩 79
4.2.5 딥러닝 애플리케이션을 위한 프로세싱 반복 처리 81
4.3 CPU/GPU에서 리소스 로드하기 81
4.3.1 Fetch API 82
4.3.2 레이블 인코딩 84
4.3.3