CHAPTER 0 개발 환경 준비
0.1 아나콘다 설치
0.2 가상 환경 만들기
0.3 라이브러리 설치
0.4 주피터 노트북 실행 및 조작
CHAPTER 1 머신러닝 개요
1.1 머신러닝 기초
1.2 머신러닝 학습 방식
연습 문제
CHAPTER 2 머신러닝의 흐름과 과적합
2.1 머신러닝의 흐름
2.2 학습 데이터 사용법
2.3 과적합
2.4 앙상블 학습
연습 문제
CHAPTER 3 성능평가지표와 PR 곡선
3.1 성능평가지표
3.2 PR 곡선
연습 문제
종합 문제
CHAPTER 4 파이썬 기초, 변수와 자료형
4.1 파이썬 기초
4.2 변수
4.3 자료형
4.4 if 문
연습 문제
CHAPTER 5 파이썬 기본 문법
5.1 리스트
5.2 딕셔너리
5.3 while 문
5.4 for 문
5.5 추가 설명
연습 문제
CHAPTER 6 함수 기초
6.1 내장 함수와 메서드
6.2 함수
6.3 클래스
6.4 문자열 포맷 지정
연습 문제
종합 문제
CHAPTER 7 NumPy
7.1 NumPy 개요
7.2 NumPy 1차원 배열
7.3 NumPy 2차원 배열
연습 문제
종합 문제
CHAPTER 8 Pandas 기초
8.1 Pandas 개요
8.2 Series
8.3 DataFrame
연습 문제
CHAPTER 9 Pandas 응용
9.1 DataFrame 연결과 결합의 개요
9.2 DataFrame 연결
9.3 DataFrame 결합
9.4 DataFrame을 이용한 데이터 분석
연습 문제
종합 문제
CHAPTER 10 데이터 시각화
10.1 다양한 그래프
10.2 난수 생성
10.3 시간 데이터
10.4 데이터 조작
연습 문제
CHAPTER 11 matplotlib 사용하기
11.1 한 종류의 데이터 시각화하기
11.2 여러 데이터 시각화하기(1
11.3 여러 데이터 시각화하기(2
연
인공지능 시대 딥러닝은 지속적인 발전이 기대되는 분야이자 4차산업 시대를 이끌 기술입니다. 이러한 딥러닝을 배우려면 강력한 라이브러리를 제공하는 파이썬을 알아야 합니다. 이 책은 파이썬과 딥러닝을 풍부한 그림과 구체적인 예로 기초부터 활용까지 제대로 알려줍니다.
1 파이썬부터 배웁니다.
초반 간략히 딥러닝을 소개한 뒤 바로 파이썬을 학습합니다. 딥러닝 기초와 함수 사용법을 배우고 행렬 계산에 특화된 NumPy와 빅데이터를 다루는 Pandas를 반복적으로 다루면서 파이썬 사용법을 철저히 익힙니다.
2 이미지 인식으로 딥러닝을 학습합니다.
이미지를 감지하고 시각화하는 언뜻 어려워 보이는 주제를 영상 이미지를 활용하여 쉽고 재미있게 다가갈 수 있습니다. 어떤 근거로 구현할 것인지 수치와 예제로 알려주므로 자신감을 갖고 공부할 수 있습니다.
3 문제로 복습하고 다음 단계로 넘어갑니다.
개념 설명 후에는 문제를 풀면서 그동안 배운 지식을 바로 활용할 수 있도록 구성됐습니다. ‘손을 움직여’ 딥러닝을 배울 수 있습니다.