도서상세보기

도서명 단단한 강화학습 : 강화학습 기본 개념을 제대로 정리한 인공지능 교과서 - 아이러브 인공지능 27
저자 리처드 서튼 외공저
출판사 제이펍
출판일 2020-03-31
정가 35,000원
ISBN 9791190665179
수량
CHAPTER 01 소개 1
1.1 강화학습 2
1.2 예제 5
1.3 강화학습의 구성 요소 7
1.4 한계와 범위 9
1.5 확장된 예제: 틱택토 10
1.6 요약 16
1.7 강화학습의 초기 역사 17
참고문헌 27

PART I 표 형태의 해법
CHAPTER 02 다중 선택 31
2.1 다중 선택 문제 32
2.2 행동 가치 방법 34
2.3 10중 선택 테스트 35
2.4 점증적 구현 38
2.5 비정상 문제의 흔적 40
2.6 긍정적 초깃값 42
2.7 신뢰 상한 행동 선택 44
2.8 경사도 다중 선택 알고리즘 46
2.9 연관 탐색(맥락적 다중 선택 50
2.10 요약 51
참고문헌 및 역사적 사실 54

CHAPTER 03 유한 마르코프 결정 과정 57
3.1 에이전트-환경 인터페이스 58
3.2 목표와 보상 64
3.3 보상과 에피소드 66
3.4 에피소딕 작업과 연속적인 작업을 위한 통합 표기법 69
3.5 정책과 가치 함수 70
3.6 최적 정책과 최적 가치 함수 76
3.7 최적성과 근사 82
3.8 요약 83
참고문헌 및 역사적 사실 84

CHAPTER 04 동적 프로그래밍 89
4.1 정책 평가(예측 90
4.2 정책 향상 94
4.3 정책 반복 97
4.4 가치 반복 100
4.5 비동기 동적 프로그래밍 103
4.6 일반화된 정책 반복 104
4.7 동적 프로그래밍의 효율성 106
4.8 요약 107
참고문헌 및 역사적 사실 109

CHAPTER 05 몬테카를로 방법 111
5.1 몬테카를로 예측 112
5.2 몬테카를로 행동 가치 추정 118
5.3 몬테카를로 제어 119
5.4 시작 탐험 없는 몬테카를로 제어 123
5.5 중요도추출법을 통한 비활성 정책 예측 126
5.6 점증적 구현 133
5.7 비활성 몬테카를로 제어 135
5.8 할인을 고려한