[Part 1 기초]
CHAPTER 1 딥러닝을 향해 - 머신러닝 기초
1.1 머신러닝이란 무엇인가
__1.1.1 머신러닝은 AI와 어떤 연관성이 있는가
__1.1.2 머신러닝으로 할 수 있는 것과 할 수 없는 것
1.2 사례로 보는 머신러닝
__1.2.1 애플리케이션에서 머신러닝 사용
__1.2.2 지도학습
__1.2.3 비지도학습
__1.2.4 강화학습
1.3 딥러닝
1.4 이 책에서 학습할 내용
1.5 요약
CHAPTER 2 머신러닝 문제로서의 바둑
2.1 왜 게임인가
2.2 간단한 바둑 소개
__2.2.1 바둑판 이해하기
__2.2.2 돌 놓기와 잡기
__2.2.3 경기 종료 및 점수 계산
__2.2.4 패 이해하기
2.3 접바둑
2.4 추가 학습 자료
2.5 머신에 무엇을 가르칠 수 있을까
__2.5.1 포석 두기
__2.5.2 다음 수 찾기
__2.5.3 고려할 수 줄이기
__2.5.4 게임 현황 평가하기
2.6 바둑 AI가 얼마나 강력한지 측정하는 방법
__2.6.1 일반 바둑 등급
__2.6.2 바둑 AI 벤치마킹
2.7 요약
CHAPTER 3 첫 번째 바둑봇 만들기
3.1 파이썬으로 바둑 나타내기
__3.1.1 바둑판 구현하기
__3.1.2 바둑에서 연결 추적하기 : 이음
__3.1.3 바둑판에 돌 놓기와 따내기
3.2 대국 현황 기록과 반칙수 확인
__3.2.1 자충수
__3.2.2 패
3.3 게임 종료
3.4 첫 번째 봇 만들기 : 상상 가능한 최약체 바둑 AI
3.5 조브리스트 해싱을 사용한 대국 속도 향상
3.6 봇과 대국하기
3.7 요약
[Part 2 머신러닝과 게임 AI]
CHAPTER 4 트리 탐색을 통한 경기
4.1 게임 분류
4.2 미니맥스 탐색을 사용한 상대 수 예측
4.3 틱택토 풀기 : 미니맥스 예제
4.4 가지치기를 통한 탐색 공간 축소
__4.4.1 위치 평가를 통한 탐색 깊이 축소
__4.4.2 알파-베타 가지
★ 딥러닝 바둑봇을 만들며 딮러닝을 깊게 이해하자
이 책을 덮을 때쯤 알파고 형태의 바둑 엔진이 어떻게 구현되었는지 이해하게 될 뿐만 아니라 몬테카를로 트리 탐색, 딥러닝, 강화학습 같은 현대 AI 알고리즘의 주요 구성 요소를 매우 실질적으로 이해할 수 있게 될 것이다. 저자는 실제로 돌려볼 수 있는 흥미로운 바둑 예제를 사용해서 이런 기술 주제를 조심스럽게 연결해두었다. 그외에도 지금까지 발명된 세상 모든 게임 중 가장 아름답고 도전적인 바둑의 기초 지식도 배우게 될 것이다.
★ 알파고 동작하는 딥러닝 바둑봇을 만들고 배포하라
실제로 작동하는 파이썬 코드도 제시하고, 개념 설명도 훌륭하다. 책 내용을 익히면 바둑봇 직접 구현할 수 있도록 안내한다. 바둑봇이 작동하는 데 필요한 데이터 포맷, 배포, 클라우드 컴퓨팅 같은 주제도 자세히 다룬다. 온라인 바둑 서버에 봇을 등록하는 방법도 알려준다. 한 마디로 이 책은 현대 인공지능과 머신러닝을 장착한 바둑봇을 만드는 전 과정을 알려준다.
★ 다루는 핵심 내용
1. 스스로 학습하는 게임 AI를 만들고 훈련하기
2. 고전 게임 AI를 딥러닝으로 개선하기
3. 딥러닝에 사용하는 신경망을 구현하기
★ 장별 요약
[1부 기초]
책의 나머지 부분에서 다루는 주요 개념을 소개한다.
_1장 딥러닝을 향해 - 머신러닝 기초, 인공지능, 머신러닝, 딥러닝의 고차원적인 개요를 가볍게 제시한다. 이들이 어떻게 서로 연관되어 있는지, 그리고 이 분야의 기술로 할 수 있는 것과 없는 것을 설명한다.
_2장 머신러닝 문제로서의 바둑
바둑의 규칙을 소개하고 컴퓨터에 게임을 가르칠 때 무엇을 해야 하는지 설명한다.
_3장 첫 번째 바둑봇 만들기
바둑판을 만들고, 그 위에 바둑돌을 놓고, 풀게임을 하는 부분까지 파이썬으로 구현한다. 이 장을 마치면 가장 단순한 바둑 AI가 실제로 작동하게 만들 수 있다.
[2부 머신러닝과 게임 AI]
강력한 바둑 AI를 만들 수 있는 기술적, 이론적 기반을