도서상세보기

도서명 머신러닝 도감 : 그림으로 공부하는 머신러닝 알고리즘 17
저자 아키바 신야 외공저
출판사 제이펍
출판일 2019-12-19
정가 26,000원
ISBN 9791188621842
수량
CHAPTER 1 머신러닝 기초 1
1.1 머신러닝 소개 3
머신러닝 3
머신러닝의 유형 4
머신러닝의 활용 10
1.2 머신러닝 준비하기 11
데이터의 중요성 11
지도 학습(분류의 예 14
구현 방법 17
비지도 학습의 예 19
시각화 23
그래프의 종류와 표현 방법: matplotlib을 이용한 그래프 출력 29
판다스를 이용해 데이터를 이해하고 다루기 38
마치며 45

CHAPTER 2 지도 학습 47
01 선형회귀 49
기본 개념 49
알고리즘 50
더 나아가기 53
02 정규화 58
기본 개념 58
알고리즘 61
더 나아가기 64
03 로지스틱 회귀 67
기본 개념 67
알고리즘 69
더 나아가기 71
04 서포트 벡터 머신 74
기본 개념 74
알고리즘 75
더 나아가기 77
05 커널 기법을 적용한 서포트 벡터 머신 80
기본 개념 81
알고리즘 81
더 나아가기 83
06 나이브 베이즈 분류 86
기본 개념 86
알고리즘 89
더 나아가기 93
07 랜덤 포레스트 94
기본 개념 94
알고리즘 95
더 나아가기 99
08 신경망 101
기본 개념 101
알고리즘 104
더 나아가기 108
09 k-최근접 이웃 알고리즘(kNN 110
기본 개념 110
알고리즘 112
더 나아가기 113

CHAPTER 3 비지도 학습 117
10 주성분 분석 119
기본 개념 119
알고리즘 121
더 나아가기 124
11 잠재 의미 분석 125
기본 개념 125
알고리즘 127
더 나아가기 131
12 음수 미포함 행렬 분해 132
기본 개념 132
알고리즘 134
더 나아가기 136
13 잠재 디리클레 할당 139
기본 개념 139
알고리즘 141
더 나아가기 143
14 k-평균 알고리즘 146
기본 개념 146
알고리즘 147
더 나아가기 149
15 가우시안 혼합 모델 151
기본 개념 1