도서상세보기

도서명 처음 시작하는 딥러닝 : 수학 이론과 알고리즘부터 CNN, RNN 구현까지 한 권으로 해결하기
저자 세스 와이드먼
출판사 한빛미디어
출판일 2020-08-20
정가 23,000원
ISBN 9791162243343
수량
chapter 1 신경망 기초 1
1.1 함수
1.2 도함수
1.3 합성함수
1.4 연쇄법칙
1.5 조금 더 복잡한 예제
1.6 입력이 두 개 이상인 함수의 합성함수
1.7 입력이 여러 개인 함수의 도함수
1.8 여러 개의 벡터 입력을 갖는 함수
1.9 기존 특징으로 새로운 특징 만들기
1.10 여러 개의 벡터 입력을 갖는 함수의 도함수
1.11 벡터 함수와 도함수
1.12 두 개의 2차원 행렬을 입력받는 계산 그래프
1.13 역방향 계산
1.14 마치며

chapter 2 신경망 기초 2
2.1 지도 학습
2.2 지도 학습 모델
2.3 선형회귀
2.4 모델 학습하기
2.5 학습 데이터와 테스트 데이터
2.6 모델 성능을 평가하는 코드
2.7 밑바닥부터 만드는 신경망
2.8 첫 번째 신경망 모델의 학습과 성능 평가
2.9 마치며

chapter 3 밑바닥부터 만들어보는 딥러닝
3.1 딥러닝 정의하기
3.2 신경망의 구성 요소: 연산
3.3 신경망의 구성 요소: 층
3.4 모델의 구성 요소 조립하기
3.5 NeuralNetwork 클래스와 그 외 클래스
3.6 딥러닝 구현하기
3.7 Optimizer와 Trainer 클래스
3.8 모든 구성 요소 조합하기
3.9 마치며

chapter 4 프레임워크 확장하기
4.1 신경망에 대한 직관
4.2 소프트맥스 교차 엔트로피 손실함수
4.3 실험
4.4 모멘텀
4.5 학습률 감쇠
4.6 초기 가중치 설정
4.7 드롭아웃
4.8 마치며

chapter 5 합성곱 신경망
5.1 신경망과 표현 학습
5.2 합성곱층
5.3 다채널 합성곱 연산 구현하기
5.4 Conv2DOperation 연산으로 합성곱 신경망 학습하기
5.5 마치며

chapter 6 순환 신경망
6.1 근본적인 한계: 분기 처리하기
6.2 자동 미분
6.3 순환 신경망이 필요한 이유
6.4 순환 신경망이란
6.5 RNN 코드
6.6 마치며

cha
신경망을 확실하게 이해할 수 있는 최고의 딥러닝 입문서

넘쳐나는 딥러닝 학습 자료 속에서 어떤 것부터 살펴봐야 할지 모르겠다고요? 대부분의 딥러닝 학습 자료는 크게 두 가지 유형으로 나뉩니다. 수많은 화살표로 나타낸 도표로 딥러닝의 개념을 설명하거나 혹은 빽빽한 코드로 학습 과정을 설명하고 결과를 확인합니다. 이런 유형의 학습 자료는 코드를 구성하는 수학적 원리와 신경망의 개념적 구조, 이들이 서로 동작하는 방법을 제대로 설명하지 못합니다. 이 책에서는 앞선 학습 자료의 맹점을 보완하기 위해 세 가지 관점(수식, 코드, 다이어그램으로 개념을 설명합니다.

먼저 신경망 개념에 사용하는 수식을 살펴보고, 이 연산 과정을 다이어그램으로 나타냅니다. 개념의 원리를 이해한 후, 파이썬으로 밑바닥부터 구현합니다. 간단한 딥러닝 모델부터 합성곱 신경망, 순환 신경망까지 구현해보고 이 신경망을 파이토치로 다시 한번 구현하며 프레임워크 사용법을 익힙니다. 이 책의 목표는 신경망에 대한 정확하고 확실한 이해입니다. 일단 이 책을 읽고 나면 신경망과 관련된 개념과 프로젝트를 한결 쉽게 이해하고 자신감 있게 응용할 수 있을 것입니다.

주요 내용
● 신경망 이해에 필요한 명확한 멘탈 모델과 수학적 원리 설명
● 객체지향으로 설계한 다층 신경망 프레임워크 구현 방법
● 수식과 예제로 배우는 합성곱 신경망과 순환 신경망
● 파이토치를 이용한 신경망 구현 방법

장별 요약
1장_신경망 기초 1
함수의 연산 과정을 다이어그램으로 이해하고, 미적분의 연쇄법칙으로 도함수를 구하는 방법을 알아봅니다.

2장_신경망 기초 2
선형회귀와 신경망 모델을 적용해 데이터 집합에서 주택 가격의 추이를 예측하는 학습 모델을 구현합니다.

3장_밑바닥부터 만들어보는 딥러닝
Layer, Model, Optimizer와 같은 구성 요소를 만들고 이를 조합해 전체 딥러닝 모델을 구현합니다.

4장_프레임워크 확장하기
신경망 모델의 성공 확률을 높이는 주요 학습 방법