도서상세보기

도서명 텐서플로 입문 예제로 배우는 텐서플로
저자 잔카를로 자코네
출판사 에이콘
출판일 2016-10-20
정가 20,000원
ISBN 9788960779198
수량
목차
1장. 텐서플로: 기초
__머신 러닝과 딥 러닝 기초
____지도 학습
________비지도 학습
________딥 러닝
__텐서플로 개요
__파이썬 기초
____문법
____데이터 형식
____문자열
____제어 흐름
____함수
____클래스
____예외 처리
____라이브러리 불러오기
__텐서플로 설치
____맥과 리눅스 배포판에 설치
____윈도우에 설치
____소스코드로부터 텐서플로 설치
____텐서플로 동작 확인
__첫 번째 작업 세션
__데이터 플로우 그래프
__텐서플로 프로그래밍 모델
____텐서보드 사용법
__요약
2장. 텐서플로 기초 연산
__텐서 자료 구조
____1차원 텐서
____2차원 텐서
________텐서 다루기
____3차원 텐서
____텐서플로를 이용한 텐서 다루기
________입력 데이터 준비
__복소수와 프랙탈
____망델브로 집합 데이터 준비
____망델브로 집합의 데이터 플로우 그래프 생성과 실행
____망델브로 집합 시각화
____쥘리아 집합 데이터 준비
____쥘리아 집합의 데이터 플로우 그래프 생성과 실행
____쥘리아 집합 시각화
__그레이디언트 계산
__난수
____균일 분포
____정규 분포
____시드를 이용한 난수 생성
________몬테카를로 기법
__편미분 방정식 풀기
____초기 조건 설정
____모델 생성
____그래프 실행
________연산에 사용된 함수 살펴보기
__요약
3장. 머신 러닝 시작
__선형 회귀 알고리즘
____데이터 모델
________비용 함수와 경사 하강법
________________모델 학습
__MNIST 데이터 집합
____데이터 다운로드와 준비
__분류기
____최근접 이웃 알고리즘
________학습군 제작
________비용 함수와 최적화
________________테스트와 알고리즘 평가
__데이터 군집화
____k-평균 알고리즘
____학
출판사 서평
★ 이 책에서 다루는 내용 ★
■ 수학적 문제 해결을 위한 텐서플로 환경 구축
■ 머신 러닝과 딥 러닝 기본 개념 학습
■ 데이터 모델 구축을 위한 인공 신경망 학습 및 검증
■ 회귀 알고리즘을 이용한 예측
■ 군집화를 통한 데이터 분석
■ 군집화와 데이터 분류를 위한 알고리즘 개발
■ 빅데이터 분석을 위한 GPU 컴퓨팅 구현
★ 이 책의 대상 독자 ★
프로그래밍과 수학에 대한 기본 지식이 있으며, 머신 러닝과 딥 러닝을 배우고 싶어 하는 사람을 대상으로 한다. 이 책의 내용을 숙지한다면 텐서플로의 기능을...
★ 이 책에서 다루는 내용 ★
■ 수학적 문제 해결을 위한 텐서플로 환경 구축
■ 머신 러닝과 딥 러닝 기본 개념 학습
■ 데이터 모델 구축을 위한 인공 신경망 학습 및 검증
■ 회귀 알고리즘을 이용한 예측
■ 군집화를 통한 데이터 분석
■ 군집화와 데이터 분류를 위한 알고리즘 개발
■ 빅데이터 분석을 위한 GPU 컴퓨팅 구현
★ 이 책의 대상 독자 ★
프로그래밍과 수학에 대한 기본 지식이 있으며, 머신 러닝과 딥 러닝을 배우고 싶어 하는 사람을 대상으로 한다. 이 책의 내용을 숙지한다면 텐서플로의 기능을 이용해 강력한 애플리케이션을 제작할 수 있다.
★ 이 책의 구성 ★
1장, ‘텐서플로: 기초’에서는 텐서플로 구조의 전반적인 내용과 개발 배경, 파이썬 프로그래밍 가이드라인을 설명한다. 텐서플로 설치 방법과 세션을 구동시키는 방법, 그리고 최적화와 디버깅에서 사용하는 텐서보드(TensorBoard에 대해서도 다룬다.
2장, ‘텐서플로 기초 연산’에서는 텐서플로의 수학 연산 기능에 대해 설명한다. 텐서플로의 기초 자료형을 설명하고, 이를 통해 가장 기본적인 연산부터 복잡한 편미분 방정식까지 풀어본다. 텐서플로에서 주요하게 다루는 자료 구조인 텐서(tensor에 대해서도 설명한다.
3장, ‘머신 러닝 시작’에서는 머신 러닝 모델에 대해 설명한다. 데이터 간 유사성을 특징으로 사용하는 선형 회귀 알고리