Part 01 파이토치 기초
1. 파이썬 또는 아나콘다 설치하기
1.1 파이썬 공식 홈페이지에서 다운로드하기
1.2 아나콘다를 이용해 파이썬 다운로드하기
1.3 공식 홈페이지에서 파이썬 설치하기 vs. 아나콘다를 이용해 파이썬 설치하기
1.4 가상 환경 설정하기
1.5 주피터 노트북 설치 및 실행
2. CUDA, CuDNN 설치하기
2.1 CPU vs. GPU
2.2 CUDA 역할 및 설치하기
2.3 CuDNN 역할 및 설치하기
2.4 Docker란?
3. 파이토치 설치하기
4. 반드시 알아야 하는 파이토치 스킬
4.1 텐서
4.2 Autograd
Part 02 AI Background
1. 인공지능(딥러닝의 정의와 사례
1.1 인공지능이란?
1.2 인공지능의 사례
2. 파이토치
3. 머신러닝의 정의와 종류
3.1 머신러닝이란?
3.2 머신러닝의 종류
3.3 머신러닝의 구분
3.4 지도학습 모델의 종류
4. 과적합
4.1 학습할 샘플 데이터 수의 부족
4.2 풀고자 하는 문제에 비해 복잡한 모델을 적용
4.3 적합성 평가 및 실험 설계(Training, Validation, Test , Cross Validation
5. 인공 신경망
5.1 퍼셉트론
5.2 신경망 모형의 단점
6. 성능 지표
Part 03 Deep Learning
1. 딥러닝의 정의
2. 딥러닝이 발전하게 된 계기
3. 딥러닝의 종류
4. 딥러닝의 발전을 이끈 알고리즘
4.1 Dropout
4.2 Activation 함수
4.3 Batch Normalization
4.4 Initialization
4.5 Optimizer
4.6 AutoEncoder(AE
4.7 Stacked AutoEncoder
4.8 Denoising AutoEncoder(DAE
Part 04 컴퓨터 비전
1. Convolutional Neural Network(CNN
2. CNN과 MLP
3. Data Augmentatio
파이토치를 시작하기 위한 밑거름!
딥러닝은 만능이며 이미지 관련 Task에는 CNN, 텍스트 관련 Task에는 RNN을 사용하면 된다고 많은 사람들이 알고 있다. 딥러닝은 이미지나 텍스트에 비해 높은 성능을 지니고 있는 것은 맞지만, 중요한 것은 왜 딥러닝이 이미지나 텍스트에 잘 맞는지를 이해하는 것이다. 딥러닝은 새로운 모델의 개념이 아닌, 신경망이 발전한 모델이므로 학습하는 알고리즘의 특성상 과적합이 심하게 일어난다. 이 책은 파이썬으로 딥러닝을 이해하고자 하는 사람들을 위해 그 분야를 중점적으로 친절하게 설명하고 있다. 세 명의 저자가 인공지능을 공부하면서 궁금했던 부분을 재정립하고, 꼭 알아야 할 내용만 집중적으로 정리하였기 때문에 입문자에게 적합한 도서이다. 평생 프로그래밍을 할 일이 없다고 생각하던 ‘코알못’들도 그 과정을 직접 겪은 저자가 기초부터 설명하기 때문에 어떻게 공부해야 하는지를 알 수 있을 것이다.