머리말
프롤로그
예제 소스 및 해설 다운로드
이 책의 구성
학습 가이드
PART 1 데이터 분석이란?
CHAPTER 01 데이터의 개념
01 데이터의 정의
02 데이터의 유형
03 데이터와 정보의 관계
CHAPTER 02 데이터베이스와 데이터베이스 관리 시스템
01 데이터베이스의 정의
02 데이터베이스의 특징
03 데이터베이스 적용 분야
04 데이터베이스 관리 시스템(DBMS
05 데이터베이스 관리 시스템 종류
06 CAP 정리
CHAPTER 03 빅데이터 정의 및 분석 기법
01 빅데이터의 정의
02 빅데이터의 가치
03 빅데이터가 만드는 변화
04 빅데이터 분석을 위한 기법
05 데이터 활용 진화 방향
06 빅데이터 위기와 통제 방안
07 빅데이터의 미래
CHAPTER 04 데이터 사이언스
01 데이터 사이언스의 정의
02 데이터 사이언스 업무 범위
03 데이터 사이언스 영역
04 데이터 사이언스 관련 환경 분석
CHAPTER 05 데이터 분석 및 기획
01 데이터 분석 과정
02 데이터 분석 과정 사례
03 데이터 분석 기획의 정의
CHAPTER 06 데이터 분석 방법론
01 방법론의 구성 요소와 모델 및 진행
02 데이터 분석 방법론
03 KDD 분석 방법론
04 CRISP-DM 분석 방법론
05 빅데이터 분석 방법론
CHAPTER 07 분석 과제 발견
01 하향식 접근 방법
02 상향식 접근 방법
03 분석할 과제의 정의
04 분석 프로젝트 관리 방안
05 분석 프로젝트 추가 관
이 책은 독자들이 간단명료하게 데이터 분석 이론을 습득하고, 오픈 소스 기반이면서 강력한 그래픽 기능을 지원하는 R을 이용하여 실무에서 접할 수 있는 데이터 분석 실습을 할 수 있도록 구성하였습니다. 이 책의 명령어들을 하나씩 입력하면서 예제를 통해 어떤 기법을 사용해야 하는지 익힐 수 있으며, 명령어 옆에 있는 설명과 ‘명령어 정리’를 참고하여 R과 데이터 분석을 이해하고 다양한 상황에 응용할 수 있습니다. 이 책은 분명 중간에 포기하지 않고 재미있게 다양한 분석 기법을 익히도록 도울 것입니다.
데이터 분석 방법을 스스로 깨우친다!
이 책이 다른 책과 다른 점은 원리나 공식을 나열하기보다 언제 어떤 기법을 써서 어떤 결과를 얻을 수 있는지 익힐 수 있도록 구성한 것입니다. 마치, 우리가 운전을 하면서도 엔진 구성이나 타이어의 원리를 모르는 것과 같이 원리나 공식을 암기하지 않더라도 데이터 분석을 자연스럽게 이해하고 응용하면서 각 기법의 의미와 원리, 활용 방향을 깨닫게 됩니다.
분석에 필요한 기술 전부를 익힌다!
데이터 분석 기초 이론부터 다양한 주요 분석 기법(회귀, 의사 결정 나무, 주성분, 연관 규칙, 군집, 시계열, 통계 및 전처리 분석 기법, 특수 상황에 대한 분석 기법(구조 방정식, 소셜 네트워크, 텍스트 마이닝 등을 재미있게 익히면서 데이터를 분석하고, 데이터 사이 관계를 파악하여 숨은 의미와 유용한 정보를 찾을 수 있습니다.
데이터 분석 전문가 자격증까지 대비한다!
이 책의 내용 대부분은 데이터 분석 전문가 자격증과 밀접하게 연관되어 있습니다. 시험의 주요 내용인 데이터에 대한 이해와 처리 기술에 대한 기본 지식, 시각화 방법을 다루기 때문에 데이터 분석을 익히는 동시에 데이터 분석 전문가(ADP, ADsP 자격증까지 대비할 수 있습니다. 자격증에 대비하여 우수한 역량을 확보하세요.
200개