CHAPTER 1 경진 대회
1.1 경진 대회란?
1.2 경진 대회 플랫폼
1.3 경진 대회 참가부터 종료까지
1.4 경진 대회의 참가 의미
1.5 상위권 진입의 중요 팁
CHAPTER 2 경진 대회의 평가지표
2.1 경진 대회의 종류
2.2 경진 대회의 데이터셋
2.3 평가지표
2.4 평가지표와 목적함수
2.5 평가지표의 최적화
2.6 평가지표 최적화 사례
2.7 데이터 정보 누출
CHAPTER 3 특징 생성
3.1 이 장의 구성
3.2 모델과 특징
3.3 결측값 처리
3.4 수치형 변수 변환
3.5 범주형 변수 변환
3.6 날짜 및 시간변수 변환
3.7 변수의 조합
3.8 다른 정형 데이터와의 결합
3.9 집약하여 통계량 구하기
3.10 시계열 데이터 처리
3.11 차원축소와 비지도 학습의 특징
3.12 기타 기법
3.13 경진 대회의 특징 사례
CHAPTER 4 모델 구축
4.1 모델의 기본 이해
4.2 경진 대회에서 사용하는 모델
4.3 GBDT
4.4 신경망
4.5 선형 모델
4.6 기타 모델
4.7 모델의 기타 팁과 테크닉
CHAPTER 5 모델 평가
5.1 모델 평가란?
5.2 검증 방법
5.3 시계열 데이터의 검증 방법
5.4 검증 포인트와 기술
CHAPTER 6 모델 튜닝
6.1 매개변수 튜닝
6.2 특징 선택과 중요도
6.3 편중된 클래스 분포의 대응
CHAPTER 7 앙상블 기법
7.1 앙상블이란?
7.2 간단한 앙상블 기법
7.3 스태킹
7.4 앙상블 대상 모델의 선택 기준
7.5 경진 대회의 앙상블 사례
캐글 상위 랭킹 진입에 필요한 필살기를 한 권에 정리했다!
상당수의 데이터 과학자가 자신의 실력을 검증하고자 ‘캐글’에 도전합니다. 대회에서는 실제 데이터를 이용하기 때문에 일반적이지 않은 데이터 처리 방법과 기법이 많이 활용됩니다. 그러한 내용을 이해하고 스스로 활용할 수 있는 능력을 갖추는 것은 경진 대회는 물론이고 실무에서도 모델을 구현하는 데 많은 도움이 됩니다.
최대한 많은 기술과 사례를 한 권에 담기 위해 노력했습니다. 정형 데이터를 다루는 대회를 대상으로 하여 문제 설정이 명확하게 주어진 가운데 성능이 높은 모델을 만들려면 어떻게 해야 하고 무엇을 주의해야 할지에 초점을 맞추었습니다. 특히 특징을 생성하는 방법, 검증, 파라미터 튜닝 등 다른 도서에서는 잘 다루지 않는 노하우나 포인트도 설명합니다. 처음부터 전부 이해하려 하기보다는 우선 빠르게 읽으면서 관심 있는 부분만 집중적으로 읽는 것을 권합니다. 또는 대회 도중에 힌트가 필요할 때 살짝 보거나 헷갈리는 부분을 사전적으로 참조하여 읽어도 좋습니다.
캐글에 도전하고 싶지만 어떻게 해야 할지 막막하거나, 매번 같은 방법만 사용하여 다른 방법도 알고 싶거나, 더 높은 순위권에 진입하는 것이 목표라면 꼭 읽어야 하는 책입니다. 경진 대회에서 쓰이는 기술은 실무에도 유용하므로 대회에 흥미가 없어도 읽으면 도움이 될 것입니다.
주요 내용
● 정밀도가 높은 모델 구축하기
● 데이터에서 특징 추출하기
● 변수를 변환해 특징 생성하기
● 평가지표를 이용해 예측 결과 최적화하기
● 하이퍼파라미터 튜닝
● 여러 모델을 조합해 예측하는 앙상블 기법과 스태킹(stacking
● 시계열 데이터 종류와 취급 방법
6. 추천사
캐글 시작에 앞서 든든한 책 한 권이 있어야 한다면 이 책을 추천합니다. 저자가 상당한 내공을 모아 든든한 한 권으로 묶어낸 만큼 다 소화한다면 데이터 관련 대회들이 조금은 쉽게 느껴질 겁니다. 최근 진행 중인 캐글 대회에도 이 책을 적극적으로 활용하면