1장. 빅데이터와 인공지능
__데이터는 새로운 석유이며 AI는 새로운 전기다
____기계들의 부상
____처리 능력의 지수적 성장
____애널리틱스의 새로운 유형
____무엇이 AI를 그렇게 특별하게 하는가
__인공지능의 응용
____데이터에서 애널리틱스의 구축
____애널리틱스의 유형: 응용 기준
____애널리틱스의 유형: 의사 결정 로직 기반
____애널리틱스 주도형 시스템의 구축
__요약
2장. 머신러닝
__데이터에서 패턴 찾기
__막강한 머신러닝 커뮤니티
__머신러닝 기법의 유형
____비지도학습
____지도학습
____강화학습
__간단한 문제의 해
____비지도학습
____지도학습: 선형회귀
____경사하강 최적화
____선형회귀에 경사하강법 적용하기
____지도학습: 분류
__더 큰 데이터셋의 분석
____정확도에 대한 측도: 정밀도 및 재현율
__분류 방법의 비교
__편향 대 분산: 미적합 대 과적합
__강화학습
____모델 기반 강화학습
____모델 프리 강화학습
__요약
3장. 비정형 데이터 다루기
__정형 데이터 대 비정형 데이터
__이미지 인식
__동영상 다루기
__텍스트 데이터 다루기
__소리 듣기
__요약
4장. 케라스를 사용한 딥러닝
__비정형 데이터의 처리
____신경망
____역전파와 경사하강법
____뱃치 경사하강법과 확률적 경사하강법
____신경망 아키텍처
__텐서플로와 케라스
__편향과 분산: 미적합과 과적합
__요약
5장. 고급 딥러닝
__심층 모델의 부상
__새로운 종류의 네트워크 층
____컨볼루션 층
____풀링 층
____드롭아웃 층
____뱃치 정규화 층
__패션 이미지 분류를 위한 심층 신경망 구축
__CNN 아키텍처와 하이퍼파라미터
__사전 훈련된 VGG 모델로 예측하기
__데이터 보강과 전이 학습
__실제 분류 문제: 펩시콜라 대 코카콜라
__순환 신경망
__요약
6장. 최첨단 딥러
★ 이 책의 대상 독자 ★
소프트웨어 개발자와 데이터 과학자를 위한 것이다. 머신러닝 모델을 개발하고, 이것을 애플리케이션 코드에 연결하며, 도커 컨테이너로 패키징된 마이크로서비스(Microservice로 배포하는 과정을 설명한다. 최신 소프트웨어는 많은 부분이 머신러닝에 의해 구동되고 있으며 데이터 과학자와 소프트웨어 개발자는 서로의 영역에 대해 많이 알수록 더 큰 이득을 볼 수 있다고 생각된다.
여러분이 소프트웨어 개발 또는 데이터 과학의 초보자이든 혹은 전문가이든 상관없이, 이 책에는 여러분을 위한 무엇인가가 있을 거라고 생각한다. 예제들을 잘 이해하기 위해서는 프로그래밍에 대한 사전 지식이 있으면 가장 좋겠지만 코드와 예제는 매우 일반적인 독자를 대상으로 하고 있다. 제시된 코드에는 상세한 코멘트가 달려 있으므로 따라가기 쉬울 것이다. 파이썬, 싸이킷런(Scikit-Learn 그리고 케라스와 같은 특정 라이브러리를 사용했지만 R이나 MATLAB, Java, SAS, C++ 같은 다른 언어나 라이브러리로 코드를 변환하기 위한 동등한 함수들을 찾을 수 있을 것이다.
개념을 이해하고자 코드를 자세히 살펴볼 필요가 없도록 가능한 한 많은 이론을 제공하려고 노력했다. 여러분의 데이터에 개념을 적용하기 쉽도록 코드는 매우 실용적으로 작성됐다. 자유롭게 예제 코드를 복제해 자신의 데이터셋에 적용해보기를 권한다.
★ 이 책의 구성 ★
1장에서 5장까지 전반부에서는 머신러닝과 딥러닝에 중점을 둔다. 파이썬(Python 코드를 사용해 머신러닝 모델을 작성하는 예를 보여주며, 이 과정을 자동화할 수 있는 도구의 예를 보여준다. 케라스(Keras 라이브러리와 텐서플로(TensorFlow 프레임워크를 사용해 이미지 분류 모델을 작성하는 예제를 보여준다. 이 로고 분류기 모델은 이미지에 들어 있는 코카콜라와 펩시콜라 로고를 식별하는 데 사용된다.
6장에서 10장까지에서는 이들 머신러닝 및 딥러닝 모델들을 실제로 프로덕션 환경에 배포하는 방법을 설명한다. 데