1장 시계열 데이터 1
1.1 시계열 데이터란? 3
1.2 시계열 데이터의 특성 5
1.2.1 시간 독립변수 5
1.2.2 자기상관 관계 6
1.2.3 추세 경향성 7
1.2.4 계절성, 순환성 8
1.2.5 불확실성 9
2장 시계열 데이터 객체 11
2.1 날짜/시간 데이터 클래스 12
2.1.1 date 클래스 12
2.1.2 POSIXct, POSIXlt 클래스 13
2.1.3 yearmon, yearqtr 클래스 15
2.1.4 날짜, 시간 포맷 16
2.2 시계열 데이터 객체 17
2.2.1 ts 17
2.2.2 xts 18
2.2.3 tsibble 20
2.3 시계열 데이터 import 22
2.3.1 엑셀 파일 23
2.3.2 CSV 파일 25
2.3.3 추가 실습 데이터 생성 26
3장 시계열 시각화 31
3.1 data.frame: ggplot2 패키지 32
3.2 xts: xts 패키지 41
3.3 ts: forecast 패키지 46
3.4 tsibble: feasts 패키지 50
3.5 data.frame: timetk 패키지 54
4장 시계열 데이터 처리 59
4.1 오늘 며칠일까?: 시간 정보 추출 60
4.2 며칠 지났을까?: 시간 기간 연산 61
4.3 이번 주 마지막 날은 며칠일까?: 시간 반올림 65
4.4 주간, 월간 데이터 합계, 평균은?: 시간 그루핑 66
4.5 주식 시가, 고가, 저가, 종가는 어떻게 구할까?: OHLC 78
4.6 3일 평균, 5일 합계는?: 시간 롤링 79
4.7 지난 달 데이터는?: 필터링 83
4.8 월별, 분기별, 연별 증감량 88
4.9 월 비중 백분율, 연 비중 백분율 92
4.10 월별, 분기별, 연별 누적 합계 96
4.11 동월별, 동분기별, 동년별 플롯 100
5장 시계열 forecasting Part I - 기초 개념 107
5.1 정상성, 비정상성 109
5.2 지연과 차분 111
5.3 AC
이 책의 특징 및 구성
- 우리 주변에서 쉽게 얻을 수 있는 실제 데이터를 사용한다.
- 우리나라의 최신 데이터를 이용하여 시계열 분석을 직접 수행하면서 분석 방법을 익힌다.
- 연별, 월별, 일별 데이터로 실습 데이터를 세분화하여 실무에 바로 적용할 수 있다.
- 복잡한 수식을 사용하지 않는 대신, 쉬운 개념 설명과 함께 R로 구현하며 이해한다.
- 시계열 분석 워크플로인 문제 파악 → 데이터 생성 → 리포팅을 위한 데이터 시각화와 데이터 핸들링 → 시계열 모델링 → 성능 분석의 형태로 구성되어 따라 하며 프로젝트를 완성할 수 있다.
- 데이터 분석가들이 많이 사용하는 R로 코드 작성을 해서 시계열 데이터에 쉽게 접근할 수 있도록 하였다.
- 지루한 텍스트 위주의 원리와 이론 설명이 아니라 실무에서 바로 적용해서 사용할 수 있는 코드 그래프로 예시를 들어 각각의 분석을 쉽고 재미있게 설명한다.
지수평활화, ARIMA 등 기본적인 시계열 처리 기법 외에도 신경망과 Prophet 같은 최신 시계열 모델, fable과 modeltime 같은 시계열 전용 프레임워크를 검증된 최근 레퍼런스와 함께 소개한다.
이 책의 대상 독자
시계열 데이터를 활용하고자 하는 데이터 분석가
시계열 데이터를 활용하여 보고서를 작성하고 시각화를 해야 하는 학생, 직장인 등