Chapter 01 인공지능이란?
1. 인공지능의 시대
2. 인공지능의 정의
3. 인공지능의 간단한 역사
4. 규칙 기반 방법 vs 머신러닝 방법
5. 인공지능은 어디에 필요할까?
Lab 머신러닝 체험하기 #1
Lab 머신러닝 체험하기 #2
Lab 티처블 머신 이용하여 머신러닝 체험하기
요약
연습문제
Chapter 02 파이썬과 넘파이 복습
1. 파이썬이란?
2. 파이썬 설치하기
3. 어떤 개발 도구를 사용할 것인가?
4. 파이썬 복습
5. 딥러닝 개발에 사용되는 라이브러리
6. 넘파이
Lab 넘파이로 평균 제곱 오차 계산하기
7. 맵플롯립
Lab 맵플롯립으로 시그모이드 함수를 그려보자
요약
연습문제
Chapter 03 머신러닝의 기초
1. 머신러닝이란?
2. 지도 학습
3. 머신러닝의 과정
4. 붓꽃을 머신러닝으로 분류해보자.
5. 필기체 숫자 이미지를 분류해보자.
6. 머신러닝 알고리즘의 성능평가
7. 머신러닝의 용도
요약
연습문제
Chapter 04 선형 회귀
1. 선형 회귀
2. 선형 회귀에서 손실 함수 최소화 방법
3. 선형 회귀 파이썬 구현 #1
4. 선형 회귀 파이썬 구현 #2
Lab 선형 회귀 실습
5. 과잉 적합 vs 과소 적합
Lab 당뇨병 예제
Mini Project 면적에 따른 집값 예측
요약
연습문제
Chapter 05 퍼셉트론
1. 신경망이란?
2. 퍼셉트론
3. 퍼셉트론 학습 알고리즘
Lab 퍼셉트론 시각화
4. 퍼셉트론의 한계점
Mini Project 퍼셉트론으로 분류
요약
연습문제
Chapter 06 MLP(다층 퍼셉트론
1. MLP(다층 퍼셉트론
2. 활성화 함수
Lab 활성화 함수 구현
3. MLP의 순방향 패스
Lab MLP 순방향 패스
4. 손실함수 계산
5. 경사 하강법
Lab 경사 하강법 실습
Lab 2차원 그래디언트 시각화
6. 역전파 학습 알고리즘
7. 역전파 알고리즘을 손으로 계산해보
이 책의 특징
- 적절한 그림을 가능한 많이 사용하여, 보다 친숙하고, 지루하지 않으며 독자들이 이해하기 쉽게 구성하였다.
- 구글이 제공하는 텐서플로우 플레이그라운드 웹사이트를 이용하여 각종 개념에 대한 실습을 코딩없이 가능하도록 하였다. 독자들은 웹사이트의 간단한 설정을 통하여 여러 가지 실험을 해볼 수 있다.
- 딥러닝의 핵심적인 개념들을 철저히 설명하였다. 예를 들어서 역전파 알고리즘은 지면을 아끼지 않고 최대한 자세히 설명하였다.
- 흥미로운 주제의 실습 코드들을 최대한 수록하였다. 다만 어려운, 너무 복잡한 코드는 제외하였다.