1장. 머리말
1.1 확률 측정: 확률측도, 확률함수
1.2 무작위 변수
1.2.1 연속과 이산 확률 변수
1.2.2 다중랜덤변수의 결합확률분포
1.3 조건부분포
1.3.1 베이즈 정리
1.3.2 독립 그리고 조건부 독립 랜덤변수
1.3.3 교환 가능한 랜덤변수
1.4 랜덤변수 기댓값
1.5 모델
1.5.1 모수 대 비모수 모델
1.5.2 모델로부터 추론
1.5.3 생성 모델
1.5.4 모델의 독립 가정
1.5.5 방향성 그래프 모델
1.6 시나리오 데이터로부터 학습
1.7 베이즈와 빈도주의 철학
1.8 요약
1.9 연습 문제
2장. 개요
2.1 개요: 베이지안 통계학과 NLP의 접점
2.2 첫 번째 연습 문제: 잠재 디리클레 할당 모델
2.2.1 디리클레분포
2.2.2 추론
2.2.3 요약 정리
2.3 두 번째 연습 문제: 베이지안 텍스트 회귀
2.4 결론과 요약
2.5 연습 문제
3장. 사전확률분포
3.1 켤레사전분포
3.1.1 켤레사전확률과 정규화 상수
3.1.2 잠재변수모델의 켤레사전확률 활용
3.1.3 켤레사전확률분포의 혼합
3.1.4 재정규화된 켤레분포
3.1.5 논의: 결합되거나 결합되지 않는다?
3.1.6 요약
3.2 다항분포와 카테고리분포에 대한 사전확률
3.2.1 디리클레분포 리뷰
3.2.2 로지스틱정규분포
3.2.3 논의
3.2.4 요약
3.3 비 - 정보성 사전확률분포
3.3.1 UNIFORM AND IMPROPER PRIORS
3.3.2 Jeffreys Prior
3.3.3 DISCUSSION
3.4 CONJUGACY AND EXPONENTIAL MODELS
3.5 모델이 갖는 다중 파라미터
3.6 구조적 사전확률분포
3.7 결론 및 정리
3.8 연습 문제
4장. 베이즈 추정.
4.1 잠재변수를 통해 배워 볼 두 가지 관점
4.2 베이지안 점 추정
4.2.1 최대 사후확률 추정 방법
4.2.2