[1장 인공지능 소개]
1.1 AI란 무엇인가
1.2 AI를 왜 공부해야 하는가
1.3 AI 종류
1.4 머신러닝의 다섯 가지 그룹
1.5 튜링 테스트를 사용한 지능 정의
1.6 기계가 인간처럼 생각하도록 만들기
1.7 합리적 에이전트 구축
1.8 일반 문제 해결사
1.9 지능형 에이전트 구축
1.10 파이썬 3 설치
1.11 패키지 설치
1.12 데이터 로딩
1.13 정리
[2장 인공지능 사용 사례]
2.1 대표적인 AI 사용 사례
2.2 디지털 개인 비서와 챗봇
2.3 자율 주행 자동차
2.4 배송과 창고 관리
2.5 인간의 건강
2.6 지식 검색
2.7 추천 시스템
2.8 스마트 홈
2.9 게임
2.10 영화 제작
2.11 인수 및 거래 분석
2.12 데이터 정리와 변환
2.13 정리
[3장 머신러닝 파이프라인]
3.1 머신러닝 파이프라인이란 무엇인가
3.2 문제 정의
3.3 데이터 수집
3.4 데이터 준비
3.5 데이터 분리
3.6 모델 훈련
3.7 정리
[4장 특성 선택과 특성 공학]
4.1 특성 선택
4.2 특성 공학
4.3 정리
[5장 지도 학습을 이용한 분류와 회귀]
5.1 지도 학습 vs. 비지도 학습
5.2 분류란 무엇인가
5.3 데이터 전처리
5.4 레이블 인코딩
5.5 로지스틱 회귀 분류기
5.6 나이브 베이즈 분류기
5.7 컨퓨전 행렬
5.8 서포트 벡터 머신
5.9 서포트 벡터 머신을 사용한 소득 데이터 분류
5.10 회귀란 무엇인가
5.11 단일 변수 회귀 구축
5.12 다변수 회귀 분석기 구축
5.13 서포트 벡터 회귀를 사용해 주택 가격 추정하기
5.14 정리
[6장 앙상블 학습을 이용한 예측 분석]
6.1 의사 결정 트리
6.2 앙상블 학습
6.3 랜덤 포레스트와 익스트림 랜덤 포레스트
6.4 클래스 불균형 다루기
6.5 그리드 검색을 사용해 최적의 훈련 매개변수 찾기
6.6 상대적인 특성 중요도 계산
인공지능 초보 여행자에게 나무가 아닌 숲을 보여주는 완벽한 안내서!
알파고, 넷플릭스, 애플 시리는 인공지능이 사용된 대표적인 사례입니다. 인공지능 기술을 아는 사람이든 모르는 사람이든 누구나 일상에서 심심찮게 접할 수 있죠. 한편으로는 우리도 모르는 사이에 인공지능이 한몫을 톡톡히 하고 있는 사례도 있습니다. 구글 검색과 쿠팡 배송 시스템이 그 예입니다. 우리는 이를 통해 인공지능이 이미 일상에 깊숙이 자리 잡았음을 알 수 있습니다.
이것이 바로 이 책의 출발점입니다. 이 책은 독자가 일상 속 친숙한 사례로부터 인공지능 학습의 첫발을 내딛도록 안내합니다. 대표적인 사용 사례들을 먼저 소개한 뒤에 각 기술을 구현하려면 어떤 알고리즘을 어떻게 적용해야 하는지 차근차근 알려줍니다. 머신러닝과 딥러닝의 핵심 개념들을 너무 얕지도, 너무 어렵지도 않게 설명해 기본기를 탄탄히 다지도록 해줍니다. 영화 추천 시스템, 게임 봇, 텍스트 감정 분석기 등을 구축하는 흥미로운 예제도 함께합니다.
장별 주요 내용
[1장 인공지능 소개]
인공지능 애플리케이션을 구축하는 데 필요한 핵심 개념을 학습합니다. 파이썬 3 설치 방법도 알아봅니다.
[2장 인공지능 사용 사례]
인공지능 알고리즘을 살펴보기에 앞서 오늘날 가장 많이 사용되는 분야와 사용 사례를 분석합니다.
[3장 머신러닝 파이프라인]
머신러닝 파이프라인이 무엇인지 학습하고 구현에 어떤 도구가 사용되는지 알아봅니다. 파이프라인 내 주요 단계를 예제와 함께 살펴봅니다.
[4장 특성 선택과 특성 공학]
특성 선택과 특성 공학이 무엇이며 왜 중요한지 학습합니다. 기존 특성과 외부 소스에서 새 특성을 만드는 방법과, 중복되거나 가치가 낮은 특성을 제거하는 방법을 알아봅니다.
[5장 지도 학습을 이용한 분류와 회귀]
지도 학습이 무엇이며 비지도 학습과 어떤 차이가 있는지 알아봅니다. 분류가 무엇인지 학습하고 다양한 알고리즘을 살펴봅니다.
[6장 앙상블 학습을 이용한 예측 분석]
다양한