추천사 xii
옮긴이 머리말 xv
머리말 xvii
베타리더 후기 xix
CHAPTER 01 도입
1.1 표기법 및 정의 2
1.1.1 자료 구조 2 / 1.1.2 대문자 시그마 표기법 3
1.2 머신러닝이란? 4
1.2.1 지도학습 4 / 1.2.2 비지도학습 6
1.2.3 준지도학습 7 / 1.2.4 강화학습 7
1.3 데이터와 머신러닝 용어 8
1.3.1 직접적/간접적으로 사용하는 데이터 8 / 1.3.2 원시 데이터와 깔끔한 데이터 9
1.3.3 훈련 및 홀드아웃 세트 10 / 1.3.4 기준점 11
1.3.5 머신러닝 파이프라인 11 / 1.3.6 매개변수와 초매개변수 12
1.3.7 분류와 회귀 12 / 1.3.8 모델 기반 학습과 인스턴스 기반 학습 13
1.3.9 얕은 학습과 딥러닝 13 / 1.3.10 훈련과 채점 14
1.4 머신러닝을 사용해야 할 때 14
1.4.1 문제가 너무 복잡해서 코딩으로 해결할 수 없을 때 14
1.4.2 문제가 지속적으로 변할 때 15
1.4.3 지각 문제일 때 15
1.4.4 연구되지 않은 현상일 때 16
1.4.5 문제의 목적이 단순할 때 16
1.4.6 비용 효율적인 경우 17
1.5 머신러닝을 사용하지 말아야 할 때 17
1.6 머신러닝 엔지니어링이란? 18
1.7 머신러닝 프로젝트 수명주기 19
1.8 요약 21
CHAPTER 02 프로젝트 시작 전
2.1 머신러닝 프로젝트의 우선순위 결정 24
2.1.1 머신러닝의 영향 24 / 2.1.2 머신러닝의 비용 24
2.2 머신러닝 프로젝트의 복잡도 추정 26
2.2.1 미리 알 수 없는 것 26 / 2.2.2 문제 단순화 27
2.2.3 비선형적 훈련 진행 27
2.3 머신러닝 프로젝트의 목표 정의 28
2.3.1 모델이 할 수 있는 작업 28 / 2.3.2 성공적인 모델의 속성 29
2.4 머신러닝팀 구성 30
2.4.1 두 가지 개발 문화 30 / 2.4.2 머신러닝팀의 구성원 31