1장 컴퓨터 비전과 영상의 이해
1.1 컴퓨터 비전 개요
1.2 영상의 구조와 표현 방법
1.2.1 영상의 획득과 표현 방법
1.2.2 그레이스케일 영상과 컬러 영상
2장 OpenCV 설치와 기초 사용법
2.1 OpenCV 개요와 설치
2.1.1 OpenCV 개요
2.1.2 OpenCV 설치하기
2.2 OpenCV 사용하기: HelloCV
2.2.1 OpenCV 프로젝트 만들기
2.2.2 영상을 화면에 출력하기
2.2.3 HelloCV에서 사용된 OpenCV 주요 함수 설명
3장 OpenCV 주요 클래스
3.1 기본 자료형 클래스
3.1.1 Point_ 클래스
3.1.2 Size_ 클래스
3.1.3 Rect_ 클래스
3.1.4 RotatedRect 클래스
3.1.5 Range 클래스
3.1.6 String 클래스
3.2 Mat 클래스
3.2.1 Mat 클래스 개요
3.2.2 행렬의 생성과 초기화
3.2.3 행렬의 복사
3.2.4 부분 행렬 추출
3.2.5 행렬의 원소 값 참조
3.2.6 행렬 정보 참조하기
3.2.7 행렬 연산
3.2.8 크기 및 타입 변환 함수
3.3 Vec과 Scalar 클래스
3.3.1 Vec 클래스
3.3.2 Scalar 클래스
3.4 InputArray와 OutputArray 클래스
3.4.1 InputArray 클래스
3.4.2 OutputArray 클래스
4장 OpenCV 주요 기능
4.1 카메라와 동영상 파일 다루기
4.1.1 VideoCapture 클래스
4.1.2 카메라 입력 처리하기
4.1.3 동영상 파일 처리하기
4.1.4 동영상 파일 저장하기
4.2 다양한 그리기 함수
4.2.1 직선 그리기
4.2.2 도형 그리기
4.2.3 문자열 출력하기
4.3 이벤트 처리
4.3.1 키보드 이벤트 처리
4.3.2 마우스 이벤트 처리
4.3.3 트랙바 사용하기
4.4 OpenCV 데이터 파일 입출력
4.4.1 FileStorage
컴퓨터 비전과 머신 러닝의 원리를 이해하고
OpenCV 코딩 스킬을 제대로 익히자!
컴퓨터 비전이란?
컴퓨터 비전은 컴퓨터를 이용하여 정지 영상 또는 동영상으로부터 의미 있는 정보를 추출하는 학문이다. 즉, 사람의 눈과 뇌가 하는 작업을 수학적 알고리즘을 통해 컴퓨터가 수행할 수 있도록 만드는 작업이다. 컴퓨터가 사물을 인식하게끔 만드는 것이 간단하지는 않지만, OpenCV를 사용하면 좀 더 쉽게 프로그래밍할 수 있다.
OpenCV를 사용하여 쉽게 배우자
OpenCV는 오픈 소스로 개발되고 있는 컴퓨터 비전 라이브러리다. 비교적 간단한 밝기와 명암비 조절, 필터링, 에지 검출부터 객체 검출, 영상 매칭, 필기체 숫자 인식 등 고급 기법까지 OpenCV를 사용하여 쉽게 구현할 수 있다. 컴퓨터 비전이 처음이라면 OpenCV와 함께 밑바닥부터 시작하자.
머신 러닝과 딥러닝 활용까지!
OpenCV는 k 최근방 이웃, 서포트 벡터 머신 등의 머신 러닝 알고리즘을 지원하며, 특히 최신 버전인 OpenCV 4는 딥러닝 활용까지 지원한다. 머신 러닝 알고리즘과 딥러닝을 이용한 필기체 숫자 인식 예제를 따라 해보면서 머신 러닝과 딥러닝을 이해해보자. 또한, 딥러닝을 이용하여 1000개의 사물을 인식하고, 실시간으로 얼굴을 검출하는 예제도 함께 만들어보자.
책에서는 C/C++로 OpenCV 라이브러리를 사용하는 방법을 설명하지만, 파이썬을 이용한 소스 코드가 필요한 분은 다음 URL에서 내려받으실 수 있습니다.
(책 본문에서 설명하는 Mat 클래스, Scalar 클래스 사용법 등 C/C+에 특화된 내용은 제외합니다