Chapter 1 딥러닝 시작
1.1 딥러닝이란
1.1.1 딥러닝의 역사
1.1.2 인공 신경망
1.1.3 최근 동향
1.2 파이썬과 파이토치
Chapter 2 파이썬
2.1 변수, 출력문, 라이브러리
2.1.1 정수형(int
2.1.2 실수형(float
2.1.3 문자형(string
2.1.4 부울형(bool
2.1.5 출력문(print
2.1.6 라이브러리(library
2.2 리스트, 튜플, 딕셔너리
2.2.1 리스트(list
2.2.2 튜플(tuple
2.2.3 딕셔너리(dict
2.3 넘파이
2.3.1 여러 가지 배열
2.3.2 배열의 크기와 변환
2.3.3 조건문을 이용한 인덱스 검색
2.3.4 배열의 기본 연산
2.3.5 배열의 병합
2.3.6 다양한 계산 함수
2.4 조건문과 반복문
2.4.1 if문
2.4.2 for문
2.4.3 while문
2.4.4 break, continue문
2.4.5 try & except문
2.5 함수와 모듈
2.5.1 함수
2.5.2 모듈
2.6 클래스
2.7 그래프 그리기
2.8 폴더 및 파일 관리
2.9 터미널에서 파이썬 실행하기
Chapter 3 지도 학습
3.1 지도 학습이란
3.2 지도 학습의 종류
3.3 데이터 세트 분할
Chapter 4 파이토치 기본
4.1 텐서
4.1.1 여러 가지 텐서
4.1.2 리스트, 넘파이 배열을 텐서로 만들기
4.1.3 텐서의 크기, 타입, 연산
4.1.4 텐서의 크기 변환
4.1.5 텐서에서 넘파이 배열로 변환
4.1.6 단일 텐서에서 값으로 반환하기
4.2 역전파
4.2.1 그래디언트 텐서
4.2.2 자동 미분 ? 선형회귀식
4.3 데이터 불러오기
4.3.1 파이토치 제공 데이터 사용
4.3.2 같은 클래스 별로 폴더를 정리한 경우
4.3.3 정리되지 않은 커스텀 데이터 불러오기
4.3.4 커스텀 데이터와 커스텀 전처리 사용하기
4.3.5 커스텀 데이터와 파이
* 주요 내용
Chapter 1 딥러닝 시작
1장에서는 인공지능을 구현하고 학습하는 방법 중 하나인 딥러닝에 대한 역사와 신경망을 구현하는데 필요한 프로그래밍 언어인 파이썬과 파이토치에 대해 간략히 알아본다.
Chapter 2 파이썬
2장에서는 프로그래밍 언어에서 가장 기본적이고 중요한 변수 타입부터 문법, 시각화, 실행 방법 등 파이썬에 대한 전반적인 내용을 다룬다.
Chapter 3 지도 학습
3장에서는 지도 학습의 개념과 과정을 살펴보고 우리가 다루는 대표적인 문제가 무엇이 있는지 알아본다. 추가적으로 머신러닝 업무에서 가장 기본인 용도에 따라 데이터 세트를 나누는 방법에 대해서 살펴본다.
Chapter 4 파이토치 기본
파이토치의 기본 타입인 텐서를 학습하고 딥러닝 모델을 최적화할 때 필요한 자동 미분법과 효율적으로 학습 데이터를 사용하는 방법에 대해서 배운다.
Chapter 5 인공 신경망
인공 신경망을 구축하고 학습하는데 기본적으로 고려해야 할 기본 구조, 활성화 함수, 손실 함수, 최적화 기법 등 인공 신경망에 대한 전반적인 내용을 다룬다.
Chapter 6 합성곱 신경망
합성곱 연산과 합성곱 신경망 구축에 대해서 다뤄보고 파이토치에서 제공하는 모델에 대해서 알아본다.
Chapter 7 순환 신경망
시퀀스 데이터의 의미를 알아보고 합성곱 신경망과 더불어 가장 많이 사용되는 순환 신경망에 대해서 설명한다.
Chapter 8 비지도 학습
정답이 있는 데이터가 부족한 문제를 해결하기 위한 비지도 학습의 대표적인 신경망인 오토인코더와 생성적 적대 신경망을 다룬다.
Chapter 9 성능 개선
모델을 학습하면서 대표적으로 겪을 수 있는 문제인 과적합, 데이터 불균형, 데이터 부족을 해결하기 위한 방법을 알아본다.
Chapter 10 시각화
모델 자체를 설명하려는 설명 가능한 인공지능에 대해서 이야기하고 대표적인 모델인 CAM를 구현한다. 추가적으로 고차원 형태의 데이터를 시