1부. 이론: 인공지능과 인공 신경망
1장. 인공지능의 분류
1.1 지도학습
1.2 비지도학습
1.3 강화학습
2장. 지도학습 구현 기법
2.1 선형 회귀
2.2 단계적 회귀
2.3 K-최근접 이웃
2.4 결정 트리
2.5 서포트 벡터 머신
3장. 인공 신경망의 구조와 연산
3.1 피드포워드 신경망
3.2 합성곱 신경망
3.3 순환 신경망
4장. 인공 신경망의 생성 과정과 응용
4.1 데이터 취득
4.2 인공 신경망의 생성, 학습, 검증
4.3 인공 신경망의 배포
2부. 실습: 케라스를 활용한 인공 신경망 구현
5장. 케라스 소개와 실습 준비
5.1 텐서플로와 케라스
5.2 인공지능 관련 파이썬 패키지
5.3 파이썬, 파이참, 케라스 설치
5.4 첫 인공 신경망 구현-집값 추정 회귀 문제
6장. 회귀 문제
6.1 피드포워드 신경망을 이용한 회귀-영구자석 전동기의 최고 효율 운전 조건
6.1.1 문제 배경과 인공 신경망의 필요성
6.1.2 데이터 불러오기와 전처리
6.1.3 신경망 구성, 훈련, 검증
6.1.4 배포-다른 환경에서 활용하기와 훈련된 모델의 모수 추출하기
6.2 모수 정규화와 과적합 방지-노이즈를 갖는 데이터 추정
6.3 연속된 신호의 추정과 출력 변수 가공-비선형 시스템 묘사
6.3.1 시스템 상태 추정의 의의
6.3.2 신경망을 이용한 비선형 시스템 묘사 모델 구현
7장. 분류 문제
7.1 합성곱 신경망의 활용-패션 이미지 분류
7.1.1 패션 이미지 데이터셋 소개
7.1.2 이미지 분류를 위한 인공 신경망 구현
7.2 순환 신경망의 활용-뉴스 분류
7.2.1 언어 처리를 위한 연산 기법
7.2.2 뉴스 분류를 위한 인공 신경망 구현
7.3 이상 진단 문제의 데이터 취득-전동기 인버터 고장 분류
7.3.1 문제 배경과 인공 신경망의 필요성
7.3.2 고장 분류 기법과 고장 데이터 취득
7.3.3 신경망 구성, 훈
◈ 이 책의 대상 독자 ◈
◆ 적은 노력으로 훌륭한 성능의 인공 신경망을 만들고 싶은 누구나
◆ 인공 신경망의 개념은 알지만 직접 만들기 막막한 분
◆ 인공 신경망을 생성/학습시킬 줄 알지만 성능에 자신이 없는 분
◆ 인공지능도 공부해봤다고 말하고 싶은 개발자
인공 신경망을 처음으로 직접 구현하거나 자신의 문제에 어떻게 적용할지 막막해 하는 독자들, 특히 공학도를 대상으로 집필했다. 이에 다양한 주제의 예제를 다루려고 노력했고, 공학 예제를 다수 다뤘다. 다양한 주제를 다뤘지만 난이도는 높지 않으며, 사용되는 인공 신경망은 단순한 형태를 가진다. 하지만 예제를 해결하면서 인공 신경망을 구성하는 방법과 성능을 향상시키는 방법을 알아갈 수 있으며, 이는 독자들이 세상에서 각광받고 있는 인공 신경망을 이해하는 데, 나아가 직접 다양한 신경망을 연구하는 데 도움을 줄 것이라 기대한다.
아울러 조금이라도 프로그래밍을 경험해본 독자를 대상으로 한다. 코드의 각 줄을 자세히 설명하진 않지만 어떤 언어든지 기본적인 문법을 이해한 경험이 있다면 코드의 원리는 충분히 이해할 수 있다. 특히 파이썬 사용 경험이 있고 튜플, 리스트의 처리에 익숙하다면 코드를 원활히 작성할 수도 있을 것이다. 인공 신경망의 구조를 결정하고 데이터를 준비하고, 학습 알고리즘을 선택하는 등의 작업이 인공 신경망의 성능에 영향을 주는데, 이러한 부분의 코드는 사실 간단한 편이며 높은 수준의 프로그래밍 실력을 요구하지 않으니 프로그래밍 경험이 조금이라도 있다면 케라스 활용에 과감히 도전해보자.
이 책을 접한 독자들이 자신이 직면한 문제에 적합한 인공 신경망을 구성하고 그 성능에 확신을 갖게 되길 바란다.
○작가의 말
인공지능과 인공 신경망(ANN, Artificial Neural Network은 날로 발전하며 그 적용 분야를 넓히고 있다. 수학적인 이론의 발전도 한몫하고 있지만 연산 장치의 발전이 인공 신경망의 수준에 미친 영향이 특히 엄청나다. 어느새 자동차의 완전 자율주