CHAPTER 1 소개
1.1 왜 머신러닝인가?
__1.1.1 머신러닝으로 풀 수 있는 문제
__1.1.2 문제와 데이터 이해하기
1.2 왜 파이썬인가?
1.3 scikit-learn
__1.3.1 scikit-learn 설치
1.4 필수 라이브러리와 도구들
__1.4.1 주피터 노트북
__1.4.2 NumPy
__1.4.3 SciPy
__1.4.4 matplotlib
__1.4.5 pandas
__1.4.6 mglearn
1.5 파이썬 2 vs. 파이썬 3
1.6 이 책에서 사용하는 소프트웨어 버전
1.7 첫 번째 애플리케이션: 붓꽃의 품종 분류
__1.7.1 데이터 적재
__1.7.2 성과 측정: 훈련 데이터와 테스트 데이터
__1.7.3 가장 먼저 할 일: 데이터 살펴보기
__1.7.4 첫 번째 머신러닝 모델: k-최근접 이웃 알고리즘
__1.7.5 예측하기
__1.7.6 모델 평가하기
1.8 요약 및 정리
CHAPTER 2 지도 학습
2.1 분류와 회귀
2.2 일반화, 과대적합, 과소적합
__2.2.1 모델 복잡도와 데이터셋 크기의 관계
2.3 지도 학습 알고리즘
__2.3.1 예제에 사용할 데이터셋
__2.3.2 k-최근접 이웃
__2.3.3 선형 모델
__2.3.4 나이브 베이즈 분류기
__2.3.5 결정 트리
__2.3.6 결정 트리의 앙상블
__2.3.7 (한국어판 부록 배깅, 엑스트라 트리, 에이다부스트
__2.3.8 커널 서포트 벡터 머신
__2.3.9 신경망(딥러닝
2.4 분류 예측의 불확실성 추정
__2.4.1 결정 함수
__2.4.2 예측 확률
__2.4.3 다중 분류에서의 불확실성
2.5 요약 및 정리
CHAPTER 3 비지도 학습과 데이터 전처리
3.1 비지도 학습의 종류
3.2 비지도 학습의 도전 과제
3.3 데이터 전처리와 스케일 조정
__3.3.1 여러 가지 전처리 방법
__3.3.2 데이터 변환 적용하기
__3.3.3 (한국어판 부
실제 문제에 대한 해법을 찾는 머신러닝 기술자를 위한 본격 머신러닝 입문서
사이킷런 1.x 버전을 반영하고 구글 코랩에서 실습 가능한 번역개정2판
이 책은 머신러닝 알고리즘을 밑바닥부터 만드는 법을 다루지는 ‘않으며’, 대신 사이킷런과 다른 라이브러리에 이미 구현된 방대한 양의 모델을 사용하는 법에 집중합니다. 머신러닝과 인공지능에 대한 사전 지식이 필요 없는 입문서로, 파이썬과 사이킷런을 중심으로 머신러닝 애플리케이션을 성공적으로 만드는 모든 단계를 밟아갑니다. 여기서 소개하는 방법들은 상용 애플리케이션을 만드는 데이터 전문가는 물론 연구자와 과학자에게도 도움이 될 것입니다. 파이썬과 NumPy, matplotlib 라이브러리에 친숙하다면 이 책의 대부분을 이해할 수 있습니다.
★ 번역개정2판의 특징
본 번역개정판은 원서 4쇄를 기반으로 하며, 초판 발행 이후 알려진 오탈자를 모두 바로잡았습니다. 또한 scikit-learn 1.x 버전 릴리스에 따라 전반적으로 내용을 업데이트했습니다. 나아가 구글 코랩에서 실습이 가능하도록 전반적으로 수정했습니다.
★ 주요 내용
● 머신러닝의 기본 개념과 응용
● 널리 사용되는 머신러닝 알고리즘의 장점과 단점
● 머신러닝으로 처리한 데이터를 표현하는 방법
● 모델 평가와 매개변수 튜닝을 위한 고급 방법
● 체인 모델과 워크플로 캡슐화를 위한 파이프라인
● 텍스트 데이터를 다루는 기술
● 머신러닝과 데이터 과학 기술 향상을 위한 조언
<추천사>
이 책은 사이킷런이 제공하는 핵심 알고리즘들의 사용법을 알려줍니다. 여기에 정성 가득한 역자주까지 더해져서, 머신러닝에 입문하는 파이썬 개발자에게는 더할 나위 없는 선물입니다.
오동권, 니트머스 CTO
이 책은 복잡한 수식은 걷어내고 사이킷런을 기반으로 각 머신러닝 알고리즘의 원리와 구현 방법을 다양한 예제로 설명합니다. 약간의 프로그래밍 지식만 있다면 복잡한 이론적 배경 없이도 혼자 학습하기 좋은 책입니다.
이상훈, 삼성생명 DA