CHAPTER 1 벡터, 행렬, 배열
__1.0 소개
__1.1 벡터 만들기
__1.2 행렬 만들기
__1.3 희소행렬 만들기
__1.4 원소 선택하기
__1.5 행렬 정보 확인하기
__1.6 벡터화 연산 적용하기
__1.7 최댓값, 최솟값 찾기
__1.8 평균, 분산, 표준편차 계산하기
__1.9 배열 크기 바꾸기
__1.10 벡터나 행렬 전치하기
__1.11 행렬 펼치기
__1.12 행렬의 랭크 구하기
__1.13 행렬식 계산하기
__1.14 행렬의 대각원소 추출하기
__1.15 행렬의 대각합 계산하기
__1.16 고윳값과 고유벡터 찾기
__1.17 점곱 계산하기
__1.18 행렬 덧셈과 뺄셈
__1.19 행렬 곱셈
__1.20 역행렬
__1.21 난수 생성하기
CHAPTER 2 데이터 적재
__2.0 소개
__2.1 샘플 데이터셋 적재하기
__2.2 모의 데이터셋 만들기
__2.3 CSV 파일 적재하기
__2.4 엑셀 파일 적재하기
__2.5 JSON 파일 적재하기
__2.6 SQL 데이터베이스로부터 적재하기
CHAPTER 3 데이터 랭글링
__3.0 소개
__3.1 데이터프레임 만들기
__3.2 데이터 설명하기
__3.3 데이터프레임 탐색하기
__3.4 조건에 따라 행 선택하기
__3.5 값 치환하기
__3.6 열 이름 바꾸기
__3.7 최솟값, 최댓값, 합, 평균 계산 및 개수 세기
__3.8 고유한 값 찾기
__3.9 누락된 값 다루기
__3.10 열 삭제하기
__3.11 행 삭제하기
__3.12 중복된 행 삭제하기
__3.13 값에 따라 행을 그룹핑하기
__3.14 시간에 따라 행을 그룹핑하기
__3.15 열 원소 순회하기
__3.16 모든 열 원소에 함수 적용하기
__3.17 그룹에 함수 적용하기
__3.18 데이터프레임 연결하기
__3.19 데이터프레임 병합하기
CHAPTER 4 수치형 데이터 다루기
__4.0 소개
__4.1 특성 스케일
주요 내용
● 벡터, 행렬, 배열
● 수치형과 범주형 데이터, 텍스트, 이미지, 날짜, 시간 다루기
● 특성 추출과 특성 선택을 사용한 차원 축소
● 모델 평가와 선택
● 선형 회귀, 로지스틱 회귀, 트리, 랜덤 포레스트, k-최근접 이웃
● 서포트 벡터 머신(SVM, 나이브 베이즈, 군집, 신경망
● 훈련된 모델의 저장과 복원