1부 동기 부여와 기본 개념
1장. 딥러닝과 자바스크립트
1.1 인공 지능, 머신 러닝, 신경망 그리고 딥러닝
__1.1.1 인공 지능
__1.1.2 전통적인 프로그래밍과 머신 러닝의 차이점
__1.1.3 신경망과 딥러닝
__1.1.4 왜 딥러닝인가? 왜 지금인가?
1.2 왜 자바스크립트와 머신 러닝을 합쳐야 하나요?
__1.2.1 Node.js를 사용한 딥러닝
__1.2.2 자바스크립트 생태계
1.3 왜 TensorFlow.js인가?
__1.3.1 TensorFlow, Keras, TensorFlow.js에 대한 간략한 역사
__1.3.2 TensorFlow.js를 선택하는 이유: 비슷한 라이브러리와의 간략한 비교
__1.3.3 전 세계에서 TensorFlow.js가 어떻게 사용되고 있나요?
__1.3.4 이 책이 TensorFlow.js에 대해 가르쳐 줄 것과 그렇지 않은 것
1.4 연습 문제
1.5 요약
2부 TensorFlow.js 소개
2장. TensorFlow.js 시작하기: 간단한 선형 회귀
2.1 예제 1: TensorFlow.js를 사용해 다운로드 시간 예측하기
__2.1.1 프로젝트 개요: 소요 시간 예측
__2.1.2 코드와 콘솔의 상호 작용 안내
__2.1.3 데이터 생성과 포매팅
__2.1.4 간단한 모델 정의하기
__2.1.5 훈련 데이터에서 모델 훈련하기
__2.1.6 훈련된 모델을 사용해 예측 만들기
__2.1.7 첫 번째 예제 요약
2.2 Model.fit( 내부: 예제 1의 경사 하강법 분석
__2.2.1 경사 하강법 최적화 이해하기
__2.2.2 역전파: 경사 하강법 내부
2.3 여러 입력 특성을 가진 선형 회귀
__2.3.1 보스턴 주택 데이터셋
__2.3.2 깃허브에서 보스턴 주택 프로젝트를 가져와 실행하기
__2.3.3 보스턴 주택 데이터 얻기
__2.3.4 보스턴 주택 문제를 정확하게 정의하기
__2.3.5 데이터 정규화
__2.3.6 보스턴
○책속에서
누구를 위한 책인가
웹 프런트엔드 개발이나 Node.js 기반 백엔드 개발 경험을 바탕으로 자바스크립트에 대한 실무 지식을 가지고 있으며 딥러닝 세계로 모험을 떠나고 싶은 프로그래머를 위해 이 책을 썼습니다. 이 책의 목표는 다음 두 그룹에 해당하는 독자들의 학습 요구를 만족시키는 것입니다.
● 머신 러닝이나 수학적 배경지식이 거의 또는 전혀 없지만 분류와 회귀 같은 일반적인 데이터 과학 문제를 해결하기 위한 딥러닝 워크플로를 이해하고 딥러닝의 작동 방식을 알고 싶은 자바스크립트 프로그래머
● 사전 훈련된 모델을 웹 앱이나 백엔드 스택에 새로운 기능으로 배포하는 작업을 담당하는 웹 또는 Node.js 개발자
첫 번째 그룹의 독자를 위해 이 책은 재미있는 자바스크립트 코드 예제를 사용해 머신 러닝과 딥러닝의 기본 개념을 기초부터 소개합니다. 수학 대신에 그림, 의사 코드, 구체적인 예제를 사용해 딥러닝 작동 방식의 기초를 직관적이지만 확고하게 이해할 수 있도록 돕습니다.
두 번째 그룹의 독자를 위해 기존 모델(예를 들면 파이썬에서 훈련된 모델을 프런트엔드나 Node.js 스택에 배포하기 위해 웹 또는 Node.js 호환 포맷으로 변환하는 주요 단계를 다룹니다. 모델 크기와 성능 최적화 같은 실용적인 측면은 물론 서버에서 브라우저 확장 프로그램, 모바일 앱까지 다양한 배포 환경에 대한 고려 사항을 강조합니다.
이 책은 모든 독자를 위해 데이터 주입과 포매팅, 모델 구축과 로딩 그리고 추론, 평가, 훈련을 실행하기 위한 TensorFlow.js API를 깊게 다룹니다.
마지막으로, 자바스크립트나 다른 언어로 정기적인 코딩을 하지는 않지만 기술적인 마인드가 있는 사람에게도 이 책이 기초 및 고급 신경망을 위한 입문서로 유용할 것입니다.
책의 구성: 로드맵
이 책은 네 부분으로 구성되어 있습니다.
1장만 포함된 1부는 인공 지능, 머신 러닝, 딥러닝에 대한 전체 그림을 제시하고 자바스크립트로 딥러닝을 하는 것이 왜 의미 있는