1장. 개요
1.1 자연어 처리와 그 이웃들
1.2 자연어 처리의 세 가지 주제
2장. 선형 텍스트 분류
2.1 단어 가방
2.2 나이브 베이즈
2.3 결정 학습
2.4 손실함수와 큰 마진 분류
2.5 로지스틱 회귀
2.6 최적화
2.7 분류에서의 또 다른 주제들
2.8 학습 알고리듬 요약
3장. 비선형 분류
3.1 피드포워드 뉴럴 네트워크
3.2 뉴럴 네트워크 디자인하기
3.3 뉴럴 네트워크 학습하기
3.4 컨볼루셔널(합성곱 뉴럴 네트워크
4장. 언어 기반의 분류 응용
4.1 감성 및 의견 분석
4.2 단어 의미의 모호성
4.3 텍스트 분류를 위한 의사 결정 디자인
4.4 분류기 평가하기
4.5 데이터 세트 만들기
5장. 비지도 학습
5.1 비지도 학습
5.2 기댓값 최대화의 적용
5.3 준지도 학습
5.4 도메인 적응
5.5 잠재변수가 있는 학습에 대한 여러 접근법
6장. 언어 모델
6.1 그램 언어 모델
6.2 평활화와 할인하기
6.3 순환 뉴럴 네트워크 언어 모델
6.4 언어 모델 평가하기
6.5 어휘집에 없는 단어
7장. 시퀀스 라벨링
7.1 분류에서의 시퀀스 라벨링
7.2 구조 예측을 위한 시퀀스 라벨링
7.3 비터비 알고리듬
7.4 은닉 마르코프 모델
7.5 피처를 사용한 결정하는 시퀀스 라벨링
7.6 뉴럴 시퀀스 라벨링
7.7 비지도 시퀀스 라벨링
8장. 시퀀스 라벨링 응용
8.1 품사 식별
8.2 형태구문론적 속성
8.3 개체명 인식
8.4 토크나이제이션
8.5 코드 스위칭
8.6 대화 행위
9장. 형식 언어론
9.1 정규 언어
9.2 문맥 자유 언어
9.3 가벼운 문맥 의존 언어
10장. 문맥 자유 파싱
10.1 결정형 상향식 파싱
10.2 모호성
10.3 가중치가 있는 문맥 자유 문법
10.4 가중치가 있는 문맥 자유 문법 학습하기
10.5 문법 보정
10.6 문맥 자유 파싱을 너머
11장. 의존
○제이콥 에이젠슈테인(지은이의 말
자연어 처리는 사람들의 언어를 컴퓨터가 다룰 수 있도록 만든 방법이다. 지난 10년 동안 자연어 처리는 우리 일상에 자연스럽게 스며들었다. 이미 기계 번역은 웹과 SNS 등에서 광범위하게 쓰이고 있고, 텍스트 분류 작업을 통해 메일함이 스팸 메일로 가득 차지 않도록 도와준다. 검색 엔진은 단순히 텍스트를 매칭해 찾는 것을 넘어섰으며, 언어의 아주 미묘한 차이를 다루는 높은 수준의 네트워크 분석도 이뤄진다. 대화 시스템은 굉장히 빠르게 보편화되고 있고, 정보를 얻고 유통하기에 굉장히 효율적인 도구로 사용되고 있다.
이런 다양한 애플리케이션은 공통적인 아이디어와 알고리듬, 언어학, 논리, 통계학 등을 바탕으로 만들어진다. 이 책은 이런 지식을 알아갈 수 있는 길잡이 역할을 하도록 집필했다.
○역자후기
공부하던 강의(NLP 224n에서 이 책을 처음 만난 후로, 실무를 하다가 이해 안 가는 부분을 찾아보며 일주일 동안 다섯 번 정도 이 책과 저자가 쓴 글을 마주했을 때 느꼈던 운명 같은 느낌을 아직도 간직하고 있습니다. 그러고 나서 운이 좋게도 이 책을 번역할 기회가 주어졌을 때는 운명이지 않을까 생각했습니다.
어느 책이나 번역하는 일은 항상 하늘이 내린 일이라고 생각하지만, 자연어 책을 참고하며 번역하는 일은 더욱 숙명적이고도 어려운 일이었습니다. 실력이 부족한 점도 없지 않아 있었겠지만 익숙하지 않은 언어학적인 관점을 충분히 이해하고 번역해야 하기 때문입니다. 모국어도 언어학적인 관점에서 보는 한글과 실제로 사용하는 한국어가 다릅니다. 또 한글로 쓰인 수필, 소설, 에세이, 기사 등의 문장에서 느껴지는 작은 묘미를 독자들은 크게 느끼지만, 짧은 문장에도 숨겨진 문법성의 의미와 언어학적 의미를 살려서 번역하는 것은 정말 힘든 일이었습니다.
이 책은 자연어 처리의 정석이라고도 할 수 있는 교과서 스타일의 책입니다. 한국어로 잘 설명된 교과서를 보는 것도 상당한 에너지가 필요하고, 시작하기 전 마음을 다잡아야 하는데 이