▣ 1장: 파이썬 기반의 머신러닝과 생태계 이해
01. 머신러닝의 개념
___머신러닝의 분류
___데이터 전쟁
___파이썬과 R 기반의 머신러닝 비교
02. 파이썬 머신러닝 생태계를 구성하는 주요 패키지
___파이썬 머신러닝을 위한 S/W 설치
03. 넘파이
___넘파이 ndarray 개요
___ndarray의 데이터 타입
___ndarray를 편리하게 생성하기 - arange, zeros, ones
___ndarray의 차원과 크기를 변경하는 reshape(
___넘파이의 ndarray의 데이터 세트 선택하기 - 인덱싱(Indexing
___행렬의 정렬 - sort( 와 argsort(
___선형대수 연산 - 행렬 내적과 전치 행렬 구하기
04. 데이터 핸들링 - 판다스
___판다스 시작 - 파일을 DataFrame으로 로딩, 기본 API
___DataFrame과 리스트, 딕셔너리, 넘파이 ndarray 상호 변환
___DataFrame의 칼럼 데이터 세트 생성과 수정
___DataFrame 데이터 삭제
___Index 객체
___데이터 셀렉션 및 필터링
___정렬, Aggregation 함수, GroupBy 적용
___결손 데이터 처리하기
___apply lambda 식으로 데이터 가공
05. 정리
▣ 2장: 사이킷런으로 시작하는 머신러닝
01. 사이킷런 소개와 특징
02. 첫 번째 머신러닝 만들어 보기 - 붓꽃 품종 예측하기
03. 사이킷런의 기반 프레임워크 익히기
___Estimator 이해 및 fit( , predict( 메서드
___사이킷런의 주요 모듈
___내장된 예제 데이터 세트
04. Model Selection 모듈 소개
___학습/테스트 데이터 세트 분리 - train_test_split(
___교차 검증
___GridSearchCV - 교차 검증과 최적 하이퍼 파라미터 튜닝을 한 번에 111
05. 데이터 전처리
___데이터 인코딩
___피처 스케일링과 정규
이 책의 특징
◎ 분류, 회귀, 차원 축소, 클러스터링 등 핵심 머신러닝 알고리즘에 대한 깊이 있는 설명
◎ 데이터 전처리, 머신러닝 알고리즘 적용, 하이퍼 파라미터 튜닝, 성능 평가 등 최적 머신러닝 모델 구성 방안 제시
◎ XGBoost, LightGBM, 스태킹 등 머신러닝 최신 기법에 대한 상세한 설명과 활용법
◎ 난이도 높은 캐글 문제를 직접 따라 해 보면서 실무 머신러닝 애플리케이션 개발 방법 체득(산탄테르 은행 고객 만족 예측, 신용카드 사기 검출, 부동산 가격 예측 고급 회귀 기법, Mercari 쇼핑몰 가격 예측 등
◎ 텍스트 분석과 NLP를 위한 기반 이론과 다양한 실습 예제 제공(텍스트 분류, 감성 분석, 토픽 모델링, 문서 유사도, 문서 군집화와 유사도, KoNLPy를 이용한 네이버 영화 감성 분석 등
다양한 추천 시스템을 직접 파이썬 코드로 구축하는 법을 제공