CHAPTER 1 인공지능과 머신러닝 소개
_1.1 인공지능이란?
_1.2 머신러닝이란?
__1.2.1 전통적인 프로그래밍에서 머신러닝으로 넘어가기
__1.2.2 컴퓨터가 어떻게 학습할 수 있을까요?
__1.2.3 전통적인 프로그래밍과 머신러닝의 차이점
_1.3 모바일 모델 제작하기
_1.4 마치며
CHAPTER 2 컴퓨터 비전 소개
_2.1 비전을 위한 뉴런 사용하기
__2.1.1 첫 분류기: 의류 구별하기
__2.1.2 데이터: 패션 MNIST
__2.1.3 패션 MNIST 모델 아키텍처
__2.1.4 패션 MNIST 모델 코딩
_2.2 컴퓨터 비전을 위한 전이 학습
_2.3 마치며
CHAPTER 3 ML Kit 소개
_3.1 안드로이드 얼굴 탐지 애플리케이션
__1단계 안드로이드 스튜디오로 프로젝트 생성하기
__2단계 ML Kit 라이브러리 추가 및 설정하기
__3단계 사용자 인터페이스 만들기
__4단계 assets 폴더 생성 후 이미지 추가하기
__5단계 기본 이미지를 UI에 불러오기
__6단계 얼굴 탐지기 호출하기
__7단계 바운딩 박스 그리기
_3.2 iOS 얼굴 탐지 애플리케이션
__1단계 Xcode 프로젝트 생성하기
__2단계 CocoaPods과 Podfiles 사용하기
__3단계 사용자 인터페이스 만들기
__4단계 애플리케이션 로직
_3.3 마치며
CHAPTER 4 안드로이드에서 ML Kit로 컴퓨터 비전 애플리케이션 만들기
_4.1 이미지 분류 및 레이블 찾기
__1단계 애플리케이션 생성 및 ML Kit 설정하기
__2단계 사용자 인터페이스 만들기
__3단계 assets 폴더 생성 후 이미지 추가하기
__4단계 이미지뷰에 이미지를 불러오기
__5단계 버튼 핸들러 코드 작성하기
__추가 단계
_4.2 객체 탐지
__1단계 애플리케이션 생성 및 ML Kit 불러오기
__2단계 액티비티 레이아웃 XM
구글러들의 ‘연예인’, 로런스 모로니가 소개하는 모바일 개발자를 위한 맞춤 머신러닝
머신러닝은 이미 우리의 일상에 녹아들어 있습니다. 물론 우리가 매일 사용하는 모바일 기기에도 말이죠. ‘온디바이스 AI’는 이름에서도 알 수 있듯이 기기 내에서 자체적으로 정보를 수집하고 연산을 하는 하드웨어 컴퓨팅을 말합니다. 온디바이스 AI는 사용자의 민감한 정보가 서버를 거치지 않아 보안에 강점을 보이고, 네트워크 지연시간도 줄일 수 있는 큰 장점을 가진 기술입니다. 우리의 일상 속 모바일 기기의 역할이 점점 더 중요해져 가는 만큼 온디바이스 AI는 앞으로 머신러닝 기술의 새로운 길이 될 것입니다.
이 책의 저자이자 구글러들의 연예인인, 로런스 모로니는 모바일 개발자들이 쉽게 모바일 애플리케이션에 머신러닝을 적용해 볼 수 있도록 다양한 샘플 코드를 통해 설명합니다. 특히, 하나의 예시를 안드로이드와 iOS 각각 단계별로 샘플 코드와 함께 소개해 더더욱 모바일 개발자들에게 큰 도움이 될 것입니다. 구글에서 모바일 머신러닝을 이끄는 저자와 역자가 소개하는 모바일 인공지능의 세계로 떠날 준비가 되셨나요? 지금 출발하세요!
주요 내용
- iOS 및 안드로이드 머신러닝 모델 구현
- iOS 및 안드로이드용 ML Kit와 Core ML, TFLite를 활용한 모바일 애플리케이션 구축
- 클라우드 추론과 온디바이스 추론의 차이 설명 및 관련 기술과 도구 소개
- 고수준 API와 저수준 API를 사용할 때 활용할 수 있는 기술과 도구 소개
- 모바일 머신러닝에 대한 개인정보보호 및 윤리 모범 사례 소개