1장 신경망 입문
1.1 소개 1
1.1.1 인간 대 컴퓨터: 인공지능의 한계 확장 4
1.2 신경망의 기본 구조 6
1.2.1 단일 계산층: 퍼셉트론 7
1.2.2 다층 신경망 25
1.2.3 계산 그래프로서의 다층망 28
1.3 역전파를 이용한 신경망 훈련 30
1.4 신경망 훈련의 실질적인 문제점들 35
1.4.1 과대적합 문제점 35
1.4.2 기울기 소실 및 폭발 문제 41
1.4.3 수렴의 어려움 41
1.4.4 국소 가짜 최적해 42
1.4.5 계산의 어려움 43
1.5 함수 합성이 강력한 이유 44
1.5.1 비선형 활성화 함수의 중요성 47
1.5.2 깊이를 이용한 매개변수 요구수준 감소 49
1.5.3 통상적이지 않은 신경망 구조들 51
1.6 흔히 쓰이는 신경망 구조들 54
1.6.1 얕은 모형으로 기본적인 기계 학습 흉내 내기 54
1.6.2 방사상 기저 함수(RBF 신경망 54
1.6.3 제한 볼츠만 기계 55
1.6.4 순환 신경망 56
1.6.5 합성곱 신경망 59
1.6.6 위계적 특징 공학과 미리 훈련된 모형 61
1.7 고급 주제 64
1.7.1 강화 학습 64
1.7.2 자료 저장과 계산의 분리 65
1.7.3 생성 대립 신경망(GAN 66
1.8 주요 벤치마크 두 가지 67
1.8.1 필기 숫자들을 담은 MNIST 데이터베이스 67
1.8.2 ImageNet 데이터베이스 69
1.9 요약 70
1.10 문헌 정보 71
1.10.1 동영상 강의 73
1.10.2 소프트웨어 정보 74
연습문제 75
2장 얕은 신경망을 이용한 기계 학습
2.1 소개 79
2.2 이진 분류 모형을 위한 신경망 구조 82
2.2.1 퍼셉트론 다시 보기 83
2.2.2 최소제곱 회귀 85
2.2.3 로지스틱 회귀 91
2.2.4 지지 벡터 기계 94
2.3 다중 분류 모형을 위한 신경망 구조들 97
2.3.1 다부류 퍼셉트론 97
2.3.2