1장. 헬스케어 개론
1.1 헬스케어란 무엇인가?
1.1.1 헬스케어 비용
1.1.2 헬스케어 기술의 진보와 질병
1.1.3 인간의 수명 연장과 기대
1.1.4 현대인의 고질병인 걱정과 두려움, 스트레스
1.1.5 환자 정보와 프라이버시 보호
1.2 헬스케어의 종류와 최신 기술 트렌드
1.2.1 디지털 헬스케어의 종류
1.2.2 최신 기술 트렌드 및 사례
1.3 헬스케어 기업들의 특징
1.4 헬스케어 빅데이터란 무엇인가?
1.4.1 헬스케어 빅데이터 분석의 위치
1.5 향후 전망
마치며
2장. 빅데이터 분석, 알고리듬, 머신러닝, 인공지능 개론
2.1 빅데이터 분석
2.1.1 빅데이터와 정보의 중요성
2.1.2 빅데이터 분석
2.1.3 빅데이터 분석가와 데이터 과학자
2.1.4 빅데이터 처리 과정
2.2 알고리듬
2.3 인공지능, 머신러닝, 딥러닝
2.3.1 머신러닝의 3가지 학습 방법
2.3.2 ChatGPT
향후 전망
마치며
3장. 파이썬 설치 및 환경 구축하기
3.1 파이썬 설치하기
3.2 IPython 알아보기
3.3 주피터 랩 알아보기
3.3.1 주피터 랩 설치
3.3.2 주피터 노트북의 명령 모드
3.4 VSCode를 주피터처럼 사용하기
3.5 데이터 분석용 필수 라이브러리 설치하기
3.5.1 NumPy
3.5.2 pandas
3.5.3 matplotlib
3.5.4 scikit-learn
3.5.5 statsmodels
3.6 권장 시스템
마치며
4장. 파이썬 기본 문법과 빌트인 자료형 알아보기
4.1 파이썬 문법
4.1.1 주석
4.1.2 함수
4.1.3 익명 함수: 람다 함수
4.1.4 흐름 제어문
4.2 자료형
4.2.1 리스트
4.2.2 튜플
4.2.3 딕셔너리
4.2.4 집합
마치며
5장. NumPy 알아보기
5.1 파이썬 리스트와 배열
5.2 NumPy 알아보기
5.3 ndarray(다차원 배열 객체 다루기
5.3.1
이 책에서 다루는 내용
-헬스케어와 빅데이터, AI(인공지능 개론
-IPython, 주피터 노트북, VSCode 사용법
-파이썬의 기본 문법
-NumPy 라이브러리 사용법
-데이터 분석의 핵심 pandas 라이브러리 사용법
-사례에 기초한 데이터 수집과 전처리
-DBMS로부터 분석 대상 데이터를 파일로 추출
-사례에 기초한 시계열 데이터 정제 및 분석, 그룹화, 시각화
-사용자 정의 함수로 데이터 분석 고도화
-자동화를 위한 배치 프로그램 작성 및 크론탭, scheduler 라이브러리 사용법
-간단한 웹 대시보드 제작
이 책의 대상 독자
컴퓨터공학 전공자 및 보건 의료 종사자, 카드사, 보험사 직원 등으로, 파이썬을 활용한 빅데이터 분석 경험이 풍부하지 않은 사람을 대상으로 한다. 파이썬 지식이 부족한 독자들도 쉽게 따라올 수 있도록 구성했다.
-파이썬으로 빅데이터를 분석하고 싶은 입문자
-시계열 데이터를 다양한 기법으로 분석, 그룹화, 시각화하기를 원하는 독자
-실제 IT기업에서 빅데이터 분석 및 시각화를 어떻게 구현하는지 궁금한 독자
-상업용 빅데이터 분석과 자동화 시스템 구축, 웹 대시보드를 만들고 싶은 독자
-파이썬의 기초부터 pandas 라이브러리 사용법 레퍼런스가 필요한 독자
이 책의 구성
처음 책을 기획할 때에는 사례 중심으로 책을 구성하고, 파이썬 문법 및 pandas에 대해서는 간략하게 다룰 계획이었다. 그러나 책을 집필하는 과정에서 다른 서적의 pandas 내용에 대한 불만족감이 생겨, 이 책이 분석 업무를 수행할 수 있는 완결된 가이드가 되도록 NumPy와 pandas를 상세하게 다루게 됐다. 다만, matplotlib은 이번에는 포함하지 않았다. matplotlib의 사용 방법은 어렵지 않아, 다른 서적이나 인터넷 자료를 참조하면 충분할 것이다.
지은이의 말
저자는 2021년에 헬스케어 IT 벤처기업 빅헤브솔루션㈜을 창업해 기술 개발을 총괄하고 있다. 업무를 수행하면서 빅