도서상세보기

도서명 몬테카를로 시뮬레이션으로 배우는 확률통계 with 파이썬
저자 장철원
출판사 비제이퍼블릭
출판일 2023-03-08
정가 33,000원
ISBN 9791165922092
수량
서문
이 책의 대상 독자 / 이 책을 읽는 방법
책의 구성
저자 소개
감사의 말베타 리더 추천사
책에 쓰인 수학 기호

Chapter01 개발 환경 구축하기

윈도우에서 개발 환경 구축하기

맥에서 개발 환경 구축하기

1.3 리눅스에서 개발 환경 구축하기

Chapter 02 기초 수학

2.1 경우의 수
2.1.1 팩토리얼
2.1.2 조합

2.2 함수
2.2.1 함수의 개념
2.2.2 단조 함수

2.3 함수의 극한
2.3.1 극한의 개념
2.3.2 자연 상수 e

2.4 수열
2.4.1 수열의 개념
2.4.2 등차수열
2.4.3 등비수열
2.4.4 무한급수

2.5 지수와 로그
2.5.1 지수
2.5.2 로그
2.5.3 지수 함수와 로그 함수

2.6 미분
2.6.1 미분의 개념
2.6.2 다양한 미분 공식
2.6.3 편미분

2.7 적분
2.7.1 정적분의 개념
2.7.2 다양한 적분 공식
2.7.3 치환 적분
2.7.4 부분 적분

Chapter 03 확률

3.1 확률의 기초
3.1.1 확률을 배우는 이유
3.1.2 확률의 개념
3.1.3 확률의 종류
3.1.4 independent
3.1.5 disjoint

3.2 확률 변수
3.2.1 확률 변수의 개념
3.2.2 모집단과 표본
3.2.3 히스토그램
3.2.4 확률 변수 파이썬 실습

3.3 확률 분포
3.3.1 확률 분포의 개념
3.3.2 이산형 확률 분포
3.3.3 연속형 확률 분포
3.3.4 확률 질량과 확률 밀도의 차이
3.3.5 iid

3.4 평균과 기댓값
3.4.1 평균과 기댓값의 개념
3.4.2 이산형 확률 변수의 기댓값
3.4.3 연속형 확률 변수의 기댓값
3.4.4 기댓값의 성질
3.4.5 표본 평균의 개념
3.4.6 표본 평균의 성질
3.4.7 평균 파이썬 실습
3.4.8 평균 라이브러리 실습

3.5 분산
3.5.1 분산의 개
이 책의 특징

- 기초, 수학, 확률 분포, 확률 과정 등 확률 통계 필수 개념을 자세히 다룬다.
- 추상적인 확률 통계의 개념을 그림으로 알기 쉽게 설명한다.
- 복잡한 수학 수식과 프로그래밍 코드를 자세하게 설명한다.

이 책이 필요한 독자

- 확률 통계 이론의 원리를 이해하고 싶으신 분
- 확률 통계 개념을 현업에 적용하고 싶으신 분
- 머신러닝, 딥러닝 학습을 위한 확률 통계의 필요성을 느끼신 분

인공지능, 머신러닝, 딥러닝 분야의 기초가 되는 확률통계

『몬테카를로 시뮬레이션으로 배우는 확률통계 with파이썬』은 통계학의 높은 진입 장벽을 넘을 수 있게 도움이 되는 책입니다. 기초 개념부터 차근차근 설명하여 처음 접하는 독자들도 쉽게 이해할 수 있습니다. 파이썬 라이브러리를 사용하지 않고 확률 통계 개념 구현하면서 확실히 내 것으로 만든 후 파이썬 라이브러리를 활용하여 확률 통계와 관련된 편리한 기능을 손 쉽게 배울 수 있습니다.