Chapter 1 레이 살펴보기
1.1 레이는 무엇인가?
_1.1.1 레이가 추구하는 목적
_1.1.2 레이의 디자인 철학
_1.1.3 레이의 3가지 계층: 코어, 라이브러리, 생태계
1.2 분산 컴퓨팅 프레임워크
1.3 데이터 과학 라이브러리
_1.3.1 데이터 과학 워크플로
_1.3.2 데이터 처리
_1.3.3 모델 학습
_1.3.4 하이퍼파라미터 튜닝
_1.3.5 모델 서빙
1.4 성장하는 생태계
1.5 요약
Chapter 2 레이 코어로 시작하는 분산 컴퓨팅
2.1 레이 코어 소개
_2.1.1 레이 API를 활용한 첫 번째 예시
_2.1.2 레이 API 개요
2.2 레이 시스템 컴포넌트
_2.2.1 노드에서 태스크 스케줄링 및 실행
_2.2.2 헤드 노드
_2.2.3 분산된 스케줄링과 실행
2.3 레이를 사용한 간단한 맵리듀스 예시
_2.3.1 매핑과 셔플
_2.3.2 단어 수 축소(리듀스 단계
2.4 요약
Chapter 3 분산 애플리케이션 개발
3.1 강화학습 소개
3.2 간단한 미로 문제 설정
3.3 시뮬레이션 구현
3.4 강화학습 모델 훈련
3.5 레이 분산 애플리케이션 구축
3.6 강화학습 용어 요약
3.7 요약
Chapter 4 레이 RLlib을 활용한 강화학습
4.1 RLlib 개요
4.2 RLlib 시작하기
_4.2.1 Gym 환경 구축
_4.2.2 RLlib CLI
_4.2.3 RLlib 파이썬 API
4.3 RLlib 실험 구성
_4.3.1 리소스 구성
_4.3.2 롤아웃 워커 구성
_4.3.3 환경 구성
4.4 RLlib 환경
_4.4.1 RLlib 환경 개요
_4.4.2 다중 에이전트
_4.4.3 정책 서버와 클라이언트 작동
4.5 고급 개념
_4.5.1 고급 환경 구축
_4.5.2 커리큘럼 학습 적용
_4.5.3 오프라인 데이터 작업
_4.5.4 다른 고급 주제
4.6 요약
Chapter 5 레이 튠을 활용한 하이퍼파
파이썬에 쉽고 빠른 병렬화를 구현하는 레이를 만나다.
머신러닝 시스템은 훈련에 많은 양의 데이터를 사용하며 모델의 크기는 점점 커지고 있다. AI 시스템에 필요한 연산의 수가 초당 1000조 회를 넘어가는 시점에서 분산 컴퓨팅은 절대적으로 필요하다. 레이는 분산 컴퓨팅 전용 파이썬 라이브러리로, 간단한 코드 변경으로 빠른 병렬화와 확장 가능한 분산 처리를 지원한다. 소규모 작업부터 대규모 클러스터까지 다양한 규모에서 높은 성능을 제공하며, API의 범위도 유연해 다양한 상황에 사용할 수 있다. 특히 텐서플로나 파이토치 같은 라이브러리와의 통합을 지원해 데이터 과학자에게도 유용하다.
이 책은 레이를 사용해 강력한 분산 애플리케이션과 모델을 구축하는 방법을 소개한다. 독자가 직접 흥미로운 프로젝트를 구현하며, 레이를 구성하는 각 라이브러리의 기능과 적용 분야를 알 수 있도록 구성에 더 복잡한 상황에 레이를 적용할 자신감을 심어준다. 이 책을 통해 레이의 잠재력을 발견해 병렬화를 구현해보자.
대상 독자
- 데이터 과학과 머신러닝에 레이를 사용하려는 데이터 관련 종사자
- 파이썬으로 분산 컴퓨팅을 구현하는 방법이 궁금한 개발자
배우는 내용
- 하이퍼파라미터 최적화를 시행하는 레이 튠
- 강화학습을 수행하는 레이 RLlib
- 분산 훈련을 지원하는 레이 트레인
- 대용량 데이터를 처리하는 레이 데이터셋
- 머신러닝 애플리케이션을 구축하는 레이 AIR
이 책의 구성
1장부터 3장까지는 분산 파이썬 프레임워크로서의 레이를 살펴보며 실질적인 예시를 통해 기본적인 개념을 배웁니다. 4장부터 10장까지는 레이 RLlib, 레이 튠, 레이 데이터셋, 레이 트레인 등 레이 생태계를 구성하는 하이레벨 라이브러리를 알아보고, 이를 사용해 애플리케이션을 만드는 방법을 배웁니다. 마지막 장에서는 레이의 생태계에 대한 종합적인 개요와 더 나아가는 방법을 안내합니다.
옮긴이의 말
레이는 소프트웨어 레이어뿐 아니라 인프라 레이어까지도