00장. 실습 환경 안내
__0.1 코랩 시작하기
__0.2 코랩 기초 사용 방법
__0.3 예제 코드 노트 복사하기
__0.4 실습에 사용할 데이터셋 준비하기
[1단계 : 딥러닝 입문하기]
01장. 딥러닝 한눈에 살펴보기
__1.1 머신러닝과 딥러닝
__1.2 지도 학습, 비지도 학습, 강화 학습
__1.3 왜 딥러닝에 파이토치인가?
__1.4 파이토치 권고 코딩 스타일
__1.5 딥러닝 문제 해결 프로세스
__1.6 딥러닝 문제 해결 체크리스트
__1.7 딥러닝에 필요한 최소한의 통계 개념
__1.8 직관적 분석에 유용한 시각화
__학습 마무리
__연습문제
02장. 인공 신경망 ANN 이해하기
__2.1 퍼셉트론
__2.2 다층 신경망으로 단층 신경망 한계 극복하기
__2.3 인공 신경망의 학습 확인해보기
__2.4 손실 함수로 올바른 가중치 찾기
__2.5 경사 하강법과 오차 역전파로 최적의 값 찾기
__2.6 활성화 함수로 기울기 소실 예방하기
__2.7 신경망 성능 비교하기
__학습 마무리
__연습문제
03장. 간단한 신경망 만들기
__3.1 사인 함수 예측하기
__3.2 보스턴 집값 예측하기 : 회귀 분석
__3.3 손글씨 분류하기 : 다중분류
__학습 마무리
__연습문제
[2단계 : 입문용 신경망 3총사 CNN, ResNet, RNN]
04장. 사진 분류하기 : CNN과 VGG
__4.1 이해하기 : CNN
__4.2 데이터 전처리하기
__4.3 CNN으로 이미지 분류하기
__4.4 전이 학습 모델 VGG로 분류하기
__학습 마무리
__연습문제
05장. 유행 따라가기 : ResNet 만들기
__5.1 이해하기 : ResNet
__5.2 이해하기 : 배치 정규화
__5.3 기본 블록 정의하기
__5.4 ResNet 모델 정의하기
__5.5 모델 학습하기
__5.6 모델 성능 평가하기
__학습 마무리
__연습문제
06장. 넷플릭스 주가
★ 이 책으로 파이토치 딥러닝을 익혀야 하는 이유
이 책은 독자 여러분이 파이토치 딥러닝을 효과적으로 배울 수 있게 파이토치 딥러닝 개념, 파이 토치 코딩, 실전 노하우에 집중합니다. 또한 학습 마무리 단계에 자연스럽게 복습되게 만들었습니다.
딥러닝 개념은 수학과 떼려야 뗄 수 없습니다. 하지만 너무 어려운 수식을 사용하면 이해하는 데 오히려 방해됩니다. 그래서 고등학교 수학 지식만 있다면 누구나 쉽게 이해할 수 있는 수식에 그림을 곁들여 단계적으로 개념을 설명했습니다.
파이토치는 클래스 기반으로 신경망, 학습 순서를 정의하고 학습합니다. 그래서 파이토치에서 권고하는 코딩 구조를 먼저 알려드리고 나서 본격적인 학습에 들어갑니다. 기초 신경망인 CNN부터 스스로 창작하는 GAN까지 총 16가지 신경망을 만들 때는 먼저 신경망의 〈기본 블록〉과 〈학습 루프〉를 그림으로 제시합니다. 제시된 〈기본 블록〉과 〈학습 루프〉를 눈으로 보고 코드로 구현하면 되기 때문에 이해하기가 훨씬 쉽니다.
신경망을 만들 때는 〈기본 블록〉을 적당한 반복을 하는데 ‘적당한’은 주로 협업을 진행해본 사람만 아는 노하우입니다. 적당한 손실 함수를 선택하거나, 적당한 평가 방법을 고를 때도 마찬가지입니다. 이 책은 그저 코드를 따라 치는 게 아니라 어떤 관점에서 문제를 풀어나가야 하는지 실전 경험을 바탕으로 설명해 여러분이 실전에서 ‘적당한’을 알맞게 선택할 수 있게 돕습니다. 참고로 독자의 시간을 아낄 수 있도록 소스 코드뿐만 아니라 학습이 끝난 모델 파일 또한 코랩으로 제공합니다. 따라서 고성능 컴퓨터가 없어도 예제를 체험할 수 있습니다.
학습 마무리에서는 전체 과정을 되짚어 보여주고, 스스로 익힌 바를 확인할 수 있게 연습 문제를 제공합니다. 이런 식으로 16가지 신경망을 모두 학습하고 나면, 딥러닝 알고리즘에 대한 이해뿐만 아니라, 파이토치 코딩에 대한 지식과 실무 노하우도 얻을 수 있게 될 겁니다. 학습에 도움이 되길 빕니다.
★ 왜 파이토치 프레임워크를