목차
서문
Chapter 1 소개
1.1 프로그램과 데이터, 수학적 객체
1.2 파이썬이란?
1.3 간단한 수학 용어
Chapter 2 파이썬 살펴보기
2.1 소개
2.2 값과 형식, 이름
2.3 정수
2.4 부동 소수점 숫자
2.5 문자?열
Chapter 3 파이썬 프로그래밍
3.1 명령문
3.2 조건문
3.3 반복문
Chapter 4 파이썬 함수
4.1 함수의 정의
4.2 재귀 함수
4.3 값으로서 함수
4.4 람다식
Chapter 5 튜플
5.1 순서쌍과 n-튜플
5.2 파이썬의 튜플
5.3 파일과 데이터베이스
Chapter 6 시퀀스
6.1 시퀀스의 속성
6.2 모노이드
6.3 파이썬의 시퀀스
6.4 고계 시퀀스 함수
6.5 내장
6.6 병렬 처리
Chapter 7 스트림
7.1 동적 생성 시퀀스
7.2 발생자 함수
7.3 끝이 없는 스트림
7.4 스트림의 연결
7.5 스트림을 이용한 프로그래밍
7.6 분산 처리
Chapter 8 집합
8.1 수학적 집합
8.2 파이썬의 집합
8.3 사례 연구: 일자리 채용 후보 찾기
8.4 단층 파일과 집합, 튜플
8.5 집합의 다른 표현
Chapter 9 매핑
9.1 수학적 매핑
9.2 파이썬 사전
9.3 사례 연구: 문자로 구성된 파일에서 특정 단어 찾기
9.4 사전이냐? 함수냐?
9.5 다중 집합
Chapter 10 관계
10.1 수학적 용어와 표기법
10.2 프로그램에서 표현
10.3 그래프
10.4 경로와 추이적 닫힘
10.5 관계형 데이터베이스 연산
Chapter 11 객체
11.1 프로그램의 객체
11.2 클래스 정의
11.3 상속과 클래스의 계층
11.4 객체지향 프로그래밍
11.5 사례 연구: 이동 평균
11.6 재귀적으로 정의된 객체: 트리
11.7 상태 기계
Chapter 12 프로그래밍 예제
12.1 음악 목록 공유
12.2 생물학 조사
12.3 작가를 위한 메모장
후기
연
출판사 서평
이 책의 가장 큰 목적은 프로그램 개발자들이 수학적으로 생각하는 것을 돕는 것입니다. 경험이 많은 프로그래머는 프로그램의 입력과 출력, 내부 데이터 객체 등을 설계하는 단계에서 집합, 시퀀스, 매?핑, 관계와 같은 이산 수학을 이용합니다. 이산 수학을 이용하면 프로그래머가 더 쉽게 생각을 정리하는 데 도움이 되며, 해결하고자 하는 문제와 접근 방법이 훨씬 쉽게 드러나기도 합니다. 이 책에서는 수학적 개념을 이용해서 프로그래밍 문제를 단순하고 깔끔하게 해결하는 방법을 설명합니다.
-출판사 리뷰-
이산 수학으로 생각하는 프로그래...
이 책의 가장 큰 목적은 프로그램 개발자들이 수학적으로 생각하는 것을 돕는 것입니다. 경험이 많은 프로그래머는 프로그램의 입력과 출력, 내부 데이터 객체 등을 설계하는 단계에서 집합, 시퀀스, 매핑, 관계와 같은 이산 수학을 이용합니다. 이산 수학을 이용하면 프로그래머가 더 쉽게 생각을 정리하는 데 도움이 되며, 해결하고자 하는 문제와 접근 방법이 훨씬 쉽게 드러나기도 합니다. 이 책에서는 수학적 개념을 이용해서 프로그래밍 문제를 단순하고 깔끔하게 해결하는 방법을 설명합니다.
-출판사 리뷰-
이산 수학으로 생각하는 프로그래밍
이 책의 가장 큰 목적은 프로그램 개발자들이 수학적으로 생각하는 것을 돕는 것입니다. 실제로 컴퓨터 과학의 언어는 수학입니다. 특히 "이산 수학(discrete mathematics"은 프로그래밍과 가장 가까운 형태의 수학으로 기호와 문자열, 진릿값을 비롯하여 속성의 모임인 "객체(object" 등으로 구성된 이산 요소를 다루는 수학입니다.
경험이 많은 프로그래머는 프로그램의 입력과 출력, 내부 데이터 객체 등을 설계하는 단계에서 집합, 시퀀스, 매핑, 관계와 같은 이산 수학을 이용합니다. 이산 수학을 이용하면 프로그래머가 더 쉽게 생각을 정리하는 데 도움이 되며, 해결하고자 하는 문제와 접근 방법이 훨씬 쉽게 드러나기도 합니다. 그뿐만 아니라 프로그램을 누구나 쉽게 이해할 수 있는