[1부] 텍스트 마이닝 기초
▣ 01장: 텍스트 마이닝 기초
1.1 텍스트 마이닝의 정의
1.2 텍스트 마이닝 패러다임의 변화
___1.2.1 카운트 기반의 문서 표현
___1.2.2 시퀀스 기반의 문서 표현
1.3 텍스트 마이닝에 필요한 지식과 도구
___1.3.1 자연어 처리 기법
___1.3.2 통계학과 선형대수
___1.3.3 시각화 기법
___1.3.4 머신러닝
___1.3.5 딥러닝
1.4 텍스트 마이닝의 주요 적용분야
___1.4.1 문서 분류
___1.4.2 문서 생성
___1.4.3 문서 요약
___1.4.4 질의응답
___1.4.5 기계번역
___1.4.6 토픽 모델링
1.5 이 책의 실습 환경과 사용 소프트웨어
___1.5.1 기본 실습 환경
___1.5.2 자연어 처리 관련 라이브러리
___1.5.3 머신러닝 관련 라이브러리
___1.5.4 딥러닝 관련 라이브러리
▣ 02장: 텍스트 전처리
2.1 텍스트 전처리의 개념
___2.1.1 왜 전처리가 필요한가?
___2.1.2 전처리의 단계
___2.1.3 실습 구성
2.2 토큰화
___2.2.1 문장 토큰화
___2.2.2 단어 토큰화
___2.2.3 정규표현식을 이용한 토큰화
___2.2.4 노이즈와 불용어 제거
2.3 정규화
___2.3.1 어간 추출
___2.3.2 표제어 추출
2.4 품사 태깅
___2.4.1 품사의 이해
___2.4.2 NLTK를 활용한 품사 태깅
___2.4.3 한글 형태소 분석과 품사 태깅
___2.4.4 참고자료
▣ 03장: 그래프와 워드 클라우드
3.1 단어 빈도 그래프 - 많이 쓰인 단어는?
3.2 워드 클라우드로 내용을 한눈에 보기
3.3 한국어 문서에 대한 그래프와 워드 클라우드
[2부] BOW 기반의 텍스트 마이닝
▣ 04장: 카운트 기반의 문서 표현
4.1 카운트 기반 문서 표현의 개념
4.2 BOW 기반의 카운트 벡터 생성
4.3 사이킷런으로
★ 이 책에서 다루는 내용 ★
◎ 토큰화, 어간 추출, 표제어 추출, 불용어 처리, 품사 태깅과 같은 텍스트 전처리 기법
◎ 단어 빈도 그래프, 워드 클라우드 그리기
◎ 카운트 벡터, TF-IDF 벡터로 문서를 변환하고, 문서 간 유사도 구하기
◎ 다양한 머신러닝/딥러닝 기법으로 문서 분류와 감성 분석 수행
◎ KoNLPy를 이용해 한국어 문서를 변환하고 다양한 머신러닝 알고리즘으로 분석
◎ 문서 벡터의 차원 축소, LDA 토픽모델링, 동적 토픽 모델링, 토픽 트렌드를 구하고 시각화
◎ Word2Vec, ELMo와 같은 워드 임베딩 기법과 Doc2Vec의 이해
◎ BERT의 이해와 활용, 파이토치를 이용한 미세조정 학습의 실습, 한국어 문서에 대한 BERT 사용법 실습
◎ 사전 학습 언어모델과 GPT-2, GPT-3, chatGPT, RoBERTa, ALBERT, ELECTRA, BART, T5 등 다양한 트랜스포머 변형 모형의 이해
◎ T5, KoBART, DistilBERT, KoELECTRA 등의 트랜스포머 모형을 이용한 문서 요약과 질의 응답 실습