옮긴이 머리말 xii
베타리더 후기 xiv
추천 서문 xvi
시작하며 xviii
감사의 글 xviii
이 책에 대하여 xxii
표지에 대하여 xxvii
CHAPTER 1 소개 1
1.1 줄리아란 무엇이며 왜 유용한가 2
1.2 데이터 과학자 관점에서 본 줄리아의 주요 특징 6
__1.2.1 줄리아는 컴파일 언어이기에 빠르다 7
__1.2.2 줄리아는 대화형 워크플로를 완벽하게 지원한다 8
__1.2.3 줄리아 프로그램은 재사용성이 높고 서로 조합하기 쉽다 9
__1.2.4 줄리아는 최첨단 패키지 관리자를 내장한다 10
__1.2.5 줄리아는 기존 코드와 통합하기 쉽다 11
1.3 이 책에서 다루는 도구들의 사용 시나리오 11
1.4 줄리아의 단점 13
1.5 어떤 데이터 분석 기술을 배우는가 15
1.6 데이터 분석에 줄리아를 어떻게 사용하는가 16
요약 18
P A R T I 줄리아 필수 기술
CHAPTER 2 줄리아 시작하기 21
2.1 값 표현하기 22
2.2 변수 정의하기 26
2.3 가장 중요한 제어 흐름 구조 사용하기 28
__2.3.1 불리언 조건에 따른 계산 29 / 2.3.2 루프 36 / 2.3.3 복합 표현식 38
__2.3.4 윈저화 평균을 계산하는 첫 번째 방법 40
2.4 함수 정의하기 42
__2.4.1 function 키워드를 사용하여 함수 정의하기 42
__2.4.2 함수의 위치 인수와 키워드 인수 43 / 2.4.3 함수에 인수를 전달하는 규칙 45
__2.4.4 함수 정의를 위한 단축 구문 46 / 2.4.5 익명 함수 47
__2.4.6 do 블록 48 / 2.4.7 줄리아의 함수 명명 규칙 49
__2.4.8 윈저화 평균을 계산하는 함수를 간단하게 정의하기 50
2.5 변수 범위 규칙 이해하기 51
요약 56
CHAPTER 3 프로젝트 확장을 위한 줄리아의 지원 57
3.1 타입 시스템 이해하기 58
데이터 분석의 넥스트 레벨, 줄리아 A to Z
언어 입문부터 데이터프레임, 시각화, 예측 모델, 파이프라인까지
줄리아는 파이썬 등에 비해 빠른 속도를 자랑하며 데이터 과학에서 점점 더 인기를 얻고 있다. 경쟁 우위를 점하기 위해 이력서에 줄리아 스킬을 추가하고 싶다면 바로 지금이 기회다.
이 책은 다른 언어에서는 (거의 불가능한 멀티스레딩 등을 포함해 프로덕션 수준의 고성능 줄리아 코드를 작성해 데이터 과학 작업을 처리하는 방법을 다룬다. 언어의 기초부터 시작해서 데이터 변환, 시각화 등을 익히고, 이어서 환율, 시계열 데이터, 체스 퍼즐 등 실세계 데이터셋을 통해 필수 데이터 분석 스킬을 마스터하며 기존 파이프라인을 자연스럽게 줄리아로 전환하는 방법 또한 배우게 된다. 30여 개의 연습 문제 및 풀이도 제공된다.
주요 챕터를 더 자세히 살펴보면, 3장에서는 프로젝트 확장에 필수적인 모듈, 패키지, 매크로, 그리고 줄리아의 타입 시스템과 계층구조를 다루고, 4장에서는 데이터 과학 분야에서 자주 사용되는 배열, 딕셔너리, 튜플 등의 사용법을 익힌다. 7장에서는 시계열 데이터를 분석하면서 실무에서 흔히 발생하는 결측값 문제를 어떻게 줄리아로 우아하게 처리할 수 있는지 배운다.
12장에서는 데이터 분석 실무에서 빠질 수 없는 데이터프레임을 가공하는 법을 살펴본다. 저자 본인이 DataFrames.jl의 리드 개발자인 만큼 아주 자세하게 데이터프레임을 다루는 법을 익힐 수 있다. 파이썬(팬더스이나 R(dplyr과 비교해서 설명하는 부분도 있어 실무자에게 더욱 도움이 된다. 14장에서는 연산 집약적인 몬테카를로 시뮬레이션으로 복잡한 금융 옵션 가격의 근사치를 구하고, 이를 웹 서비스로 구축하며 줄리아의 멀티스레딩 능력도 확인해본다.
데이터 분석의 전체 프로세스를 세분화해서 살펴보는 동시에, 현존하는 어떤 줄리아 자료보다 데이터 처리를 더 깊이 있게 다루는 책이다. 데이터 분석을 위해 마련된 줄리아의 뛰어난 기능들을 익힐 수 있을